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Université de Nice-Sophia Antipolis — CNRS

Bât. Euclide, Les Algorithmes
2000 route des Lucioles, BP 121

06903 Sophia Antipolis cedex, France

ABSTRACT

This paper is a continuation of the work initiated in [1, 2]:
we estimate parameters in a regression model, linear or not,
by minimizing (an estimate of) the entropy of the symmetri-
zed residuals, obtained by a kernel estimation of their dis-
tribution. The objective is to obtain efficiency in the ab-
sence of knowledge of the density f of the observation er-
rors, which is called adaptive estimation, see in particular
[3, 4, 5] and the review paper [6]. Connections and differ-
ences with previous work are indicated. Numerical results
illustrate that asymptotic efficiency is not necessarily in con-
flict with robustness.

1. INTRODUCTION

Consider a regression problem, with observations

Yi = η(θ̄, Xi) + εi , i = 1, . . . , n , (1)

where θ̄ is the unknown value of the model parameters θ ∈
Θ ⊂ IRp, (εi) forms a sequence of i.i.d. random variables
with p.d.f. f and η(θ, x) is a known function of θ and the de-
sign variable x. Maximum Likelihood (ML) estimation can
be used when f is known, and, under standard assumptions,

is asymptotically efficient:
√

n(θ̂n
ML − θ̄) d→ N (0,M−1

F ),
with MF the Fisher information matrix. When the density
f is only known to be symmetric about zero, the model can
then be termed semi-parametric, with θ and f respectively
its parametric and non-parametric parts: f can be consid-
ered as an infinite-dimensional nuisance parameter for the
estimation of θ, see [3]. This nuisance parameter generally
induces a loss of efficiency, and an estimator that remains
asymptotically efficient in these conditions is called adap-
tive, see [5, 7]. Beran [8] and Stone [4] proved that adaptive
estimation in the location model was possible, using respec-
tively adaptive rank estimates, and an approximation of the
score function based on a kernel estimation of f from resid-
uals obtained with a preliminary

√
n-consistent estimator.

This second approach has been further developed by Bickel
[5], see also [6].

The method we suggest consists in minimizing the en-
tropy of a kernel estimate of f based on symmetrized resid-
uals, see [1, 2]. The motivation and the connections and dif-
ferences with the Stone-Bickel approach will be presented
in Section 2. We can already mention that an advantage of
the minimum-entropy approach is its flexibility: different
methods can be used to estimate the entropy of f , each one
corresponding to a different method for estimating θ. Also,
the quest for an adaptive estimator can be decomposed into
a series of steps, which, in the case of minimum-entropy
estimators, are similar to those one encounters for LS or
ML estimation. The simplest case of a location problem is
considered in Section 3 and the extension to nonlinear re-
gression in Section 4. Section 5 illustrates the robustness
properties of the estimator through an example.

2. MINIMUM ENTROPY ESTIMATION

Define ei(θ) = Yi − η(θ, xi), the ith residual in the regres-
sion model (1). When f is known, the ML estimator θ̂n

ML

minimizes

H̄n(θ) = − 1
n

n∑
i=1

log f [ei(θ)] (2)

with respect to θ. We may then observe that (i) H̄n(θ̄) =
−(1/n)

∑n
i=1 log f(εi) is an empirical version of H(f) =

− ∫
log[f(x)]f(x)dx, (ii) the entropy of a distribution is a

measure of its dispersion, (iii) the entropy of the distribu-
tion of the symmetrized residuals is minimum at θ = θ̄.
This was the motivation in [1, 2] for minimizing an esti-
mate of the entropy of the distribution of the residuals in
the case where f is unknown (in fact, since the entropy is
shift-invariant, we need to use the symmetrized residuals
[ei(θ),−ei(θ)]). Our construction is as follows: we con-
struct a kernel estimate f̂θ

n from the symmetrized residu-
als (which ensures that f̂θ

n is symmetric); we compute its
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entropy, which forms the estimation criterion Ĥn(θ) to be
minimized. In [1, 2], Ĥn(θ) was given by

Ĥn(θ) = −
∫ An

−An

log[f̂θ
n(x)]f̂θ

n(x)dx (3)

with (An) a suitably increasing sequence of positive num-
bers (chosen in accordance with the decrease of the band-
width hn of the kernel estimate f̂θ

n). Other estimates of the
entropy will also be used in this paper.

Consider the special case of the location model. We
can then follow the same lines as Beran in [9], although
his approach is based on the Hellinger distance and ours re-
lies on the Kullback-Leibler divergence. The distribution
of the observations Yi has the density g(y) = f(y − θ̄).
Define β̂ = (θ̂, f̂) in the semi-parametric model, where θ̂

is a postulated value for θ̄ and f̂ a postulated symmetric
p.d.f., and let gβ̂(y) be the associated density for the obser-

vations, gβ̂(y) = f̂(y − θ̂). Assume that an estimate ĝn

of g is known, e.g. a kernel estimate based on the observa-
tions Y1, . . . , Yn. Straightforward calculation shows that the
symmetric f̂ and parameter θ̂ that minimize the Kullback-
Leibler divergence

L(ĝn, gβ̂) =
∫

log[ĝn(y)/gβ̂(y)]ĝn(y)dy

respectively correspond to f̂n = f̂ θ̂n

n with f̂θ
n(u) = [ĝn(u+

θ) + ĝn(−u + θ)]/2 and θ̂n = arg minθ H(f̂θ
n). Therefore,

θ̂n minimizes the entropy of a kernel estimate f̂θ
n based on

the symmetrized residuals Yi − θ,−Yi + θ.
This approach clearly has some similarities with the Sto-

ne-Bickel approach [4, 5]. They estimate θ in two stages:
first, an asymptotically locally sufficient (in the sense of
Le Cam) estimator θ̂n

1 is constructed; second, an approxi-
mated score function, the derivative of H̄n(θ) with respect
to θ, with H̄n(θ) given by (2), is used to perform a Newton-
Raphson step from θ̂n

1 . The adaptivity of the method for
the location model with symmetric errors has been proved
first by Stone [4], and Bickel [5] and Manski [6] have ex-
tended the result to other models, including non linear re-
gression. Although the construction of Ĥn(θ) may rely
on a similar kernel estimate, we can mention some impor-
tant differences between the Stone-Bickel approach and the
minimum-entropy method presented here. First, the estima-
tion criterion Ĥn, (3) or (5), is minimized through a series of
minimization steps, using an optimization algorithm. Sec-
ond, all the data are treated similarly, whereas, for technical
reasons, the developments in [5, 6] rely on sample splitting:
m observations are used to construct a preliminary param-
eter estimate θ̂m to form residuals and a score function es-
timate, the n − m remaining observations are used for the
Newton-Raphson step from θ̂n

1 (with the requirement that
m → ∞ and m/n → 0 as n → ∞). One may expect

sample splitting to degrade the performance of the estima-
tor, which is confirmed by the results presented in [6]. The
estimator proposed by Andrews [10] has the advantage of
not relying on sample splitting. Also, it is defined by the
minimization of an estimation criterion and not by a single
Newton-Raphson step. However, his approach is different
from the one suggested here: his criterion (likelihood func-
tion) is constructed from a

√
n-consistent preliminary esti-

mate θ̂n
1 , used to form a kernel estimate of f and hence of

the likelihood function; on the opposite, Ĥn does not de-
pend on any preliminary estimate.

As already mentioned in introduction, an important mo-
tivation for minimizing the entropy of the distribution of the
residuals is that it allows a lot of flexibility: many methods
are available to estimate the entropy Ĥn(θ), and, if we use
kernel estimation this is only one possibility. One may refer
to [11] for a survey which includes plug-in, sample spacing
and nearest neighbor methods.

The asymptotic properties of the minimum entropy es-
timator θ̂n = arg minθ∈Θ Ĥn(θ) can be uncovered by fol-
lowing the three steps indicated below. Here we assume
that Θ is an open subset of IRp and Ĥn(θ) some estimate of
the entropy of the distribution of the symmetrized residuals
in model (1). We also assume that θ̄ ∈ Θ, that Θ is locally
convex at θ̄ and that Ĥn(θ) is two times continuously differ-
entiable with respect to θ ∈ Θ. Convergence in probability

when n → ∞ is denoted
p→ (

θ,p� when the convergence is
uniform with respect to θ), and convergence in distribution

is denoted
d→; ∇F (θ) and ∇2F (θ) denote the first and sec-

ond order derivatives of the function F with respect to θ.
Leaving aside some usual measurability conditions, see,

e.g., Lemmas 1,2 and 3 of [12], the main steps are as fol-
lows:

(i) show that Ĥn(θ)
θ,p� H(θ), with Ĥn(θ) continuous in θ

for any n and H(θ̄) < H(θ) for any θ �= θ̄;

(ii) show that ∇2Ĥn(θ)
θ,p� ∇2H(θ), with ∇2H(θ̄) posi-

tive definite (� 0);

(iii) decompose ∇Ĥn(θ̄) into ∇H̄n(θ̄) + ∆n(θ̄), with
√

n

∇H̄n(θ̄) d→ N (0,M1) and
√

n∆n(θ̄)
p→ 0 as n →

∞.

(i) proves that θ̂n p→ θ̄, (i) and (ii) imply that ∇2Ĥn(θ̂n)
p→ M2 = ∇2H(θ̄) � 0. Consider the following Taylor
development of ∇Ĥn(θ) at θ = θ̂n, similar to that used in
[12] for LS estimation: ∇Ĥn(θ̂n) = 0 = ∇Ĥn(θ̄) + (θ̂n −
θ̄)�∇2H[αnθ̂n+(1−αn)θ̄], for some αn ∈ [0, 1]. (iii) then

implies
√

n(θ̂n − θ̄) d→ N (0,M−1
2 M1M−1

2 ) and adaptiv-
ity would result from M−1

2 M1M−1
2 = M−1

F , the inverse of
the Fisher information matrix for the model (1). Step (iii) al-
lows some freedom in the choice of the function H̄n(θ). For
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instance, under standard assumptions asymptotic normality
of

√
n∇H̄n(θ̄) holds for (2), with M1 = MF .

One may notice that (uniform)
√

n-consistency of the
entropy estimate Ĥn(θ) is not a prerequisite for

√
n-consis-

tency of θ̂n.

3. LOCATION MODEL

We shall use kernel estimates given by

kθ
n,i(u) =

1
(n − 1)hn

n∑
j=1,j �=i

K

[
u − ej(θ)

hn

]
, (4)

with ei(θ) the residuals, ei(θ) = Yi − θ, i = 1, . . . , n. Here
K is a p.d.f. symmetric about 0 that satisfies

∫ |u|K(u)du <
∞, K and its first two derivatives being continuous and
of bounded variation, see [13] (these conditions are satis-
fied e.g. by the density of the standard normal). Assume
that f has unbounded support, f and its derivatives f (s) are
bounded for s = 1, 2, 3, H(f) < ∞ and f has a finite
Fisher information for location, i(f) =

∫
[f ′(x)]2/f(x)dx <

∞. Consider the entropy estimate given by

Ĥn = − 1
n

n∑
i=1

log{fθ
n,i[ei(θ)]}Un[ei(θ)] (5)

where fθ
n,i(u) = (1/2)[kθ

n,i(u) + kθ
n,i(−u)] and Un(u) is

a function equal to zero for large values of u. We take
Un(x) = u(|x|/An − 1), with u(z) = 1 for z ≤ 0, 0 for
z ≥ 1 and u(z) varying smoothly between 0 and 1, u′(0) =
u′(1) = 0, and maxz |u′(z)| = d1 < ∞, maxz |u′′(z)| =
d2 < ∞. Ĥn(θ) is then two times continuously differen-
tiable in θ for any n. As in [14], we assume there exists a
function B(x) such that for all x, B(x) ≥ sup|y|≤x 1/f(y)
(B(x) can be assumed to be strictly increasing without any
loss of generality). Define Bn = B(2An + L). Using
[14], Theorem 4, and [15], Corollary 3.1, one can then show

that Ĥn(θ)
θ,p� H(θ) as n → ∞, provided that An (and

thus Bn) increases slowly enough, and the bandwidth hn of
the kernel estimator decreases slowly enough (Bn = nα,
hn = 1/[nα log n] with α < 1/3 is suitable). Here, H(θ) is
the entropy of the true distribution of the symmetrized resid-
uals for θ, H(θ) = − ∫

log[πθ(x)]πθ(x)dx with πθ(x) =
(1/2)[f(x + θ − θ̄) + f(x − θ + θ̄)], which is minimum at
θ = θ̄ (see also [2]). This proves point (i) of Section 2, and
thus the consistency of θ̂n that minimizes Ĥn. Similarly,
with slightly stronger conditions on f one can prove (ii),

that is, ∇2Ĥn(θ)
θ,p� ∇2H(θ), with ∇2H(θ̄) = i(f), when

Bn = nα, hn = 1/[nα log n], α < 1/7. The adaptivity of
θ̂n, i.e. step (iii), would then follow from

2√
n

n∑
i=1

(kθ̄
n,i)

′(εi)

kθ̄
n,i(εi) + kθ̄

n,i(−εi)
Un(εi)

d→ N (0, i(f)) .

One may notice that for checking this condition a difficulty
which is not present in the Stone-Bickel approach is due to
the fact that (kθ̄

n,i)
′(−x) �= −(kθ̄

n,i)
′(x).

4. NONLINEAR REGRESSION

Consider now a nonlinear regression model (1), for which
the experiment consists of repetitions at fixed points X1, . . . ,
Xm. If ξj denotes the weight of point Xj , nj = nξj of the
n observations are made at X = Xj .

Using a justification similar to that given in Section 2 for
the location model, we arrive at the following procedure:
(i) form kernel estimates f̂ j,θ of the distribution of (sym-
metrized) residuals for each design point Xj separately and
compute their respective entropies H(f̂ j,θ), (ii) compute

θ̂n = arg min
θ∈Θ

Eξ{Ĥn(θ, X)}
with Ĥn(θ, Xj) = H(f̂ j,θ) , j = 1, . . . , m . (6)

The adaptivity of this method would follow from adaptiv-
ity in the location model. However, this approach does not
extend to more general experiments since estimating the en-
tropy of the symmetrized residuals at each X is not possi-
ble without repetitions of observations. Hence the approach
used in [1, 2] that consists in mixing all (symmetrized) resid-
uals together and estimating the entropy Ĥn(θ) of their dis-
tribution, see (3). Replace ξ by ξn in (6), where ξn is an
empirical measure of the points Xi. Let U be a random
variable with distribution conditional to X given by f̂ j,θ of
(6). Then, Eξn

{Ĥn(θ, X)} = H(U |X) is the conditional
entropy of U given X , and H(U |X) ≤ H(U) = Ĥn(θ).
The entropy Ĥn(θ) obtained by mixing up all residuals is
thus an upper bound on the criterion that is minimized in
(6). Studying the adaptivity of the corresponding estima-
tor will form the subject of further work. Some preliminary
numerical results are presented below.

5. EXAMPLE

Consider the regression model η(θ, x) = θ1 exp(−θ2x) with
θ̄ = (100, 2)�, the design points are Xj = 1 + (j − 1)/9
j = 1, . . . , 10, with ξj = 1/10 for all j. We take Un(x) ≡ 1
in (5); the kernel bandwidth h is chosen by the double ker-
nel method [16] and based on residuals obtained from a ro-
bust M -estimator. Table 1 gives the trace and determinant
of the empirical covariance matrix Ĉn of

√
n(θ̂ − θ̄), ob-

tained from 100 repetitions of the estimation procedure, for
different choices of the estimator θ̂ and distribution f , using
n = 100 observations. The Minimum Entropy estimator
ME is based on (5), using gaussian kernels with residuals
symmetrized beforehand, that is, kθ

2n,i(u) given by (4) with
2n residuals es

2n = [en;−en]. The Minimum Hellinger Dis-
tance estimator MHD [9] and ME mix all residuals.
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Table 1. Values Tn, Dn of the trace and determinant of the
empirical covariance matrix Ĉn with f the standard nor-
mal, bi-exponential (f(x) = (1/

√
2) exp(−√

2|x|)), and
Student’s tν with ν = 3, 5 and 10 degrees of freedom

f N (0, 1) exp t3 t5 t10

Tn LS 7498 8304 6968 8299 7242
MHD 9172 3381 6411 8001 7106
ME 9267 3405 4620 7753 6786
Tr(M−1

F ) 6171 3086 3086 4937 5834
Dn LS 85.6 204.7 128.4 166.8 145.1

MHD 124.0 39.1 56.7 121.1 158.4
ME 116.2 34.4 36.4 105.3 120.2
det(M−1

F ) 84.3 21.1 21.1 53.9 75.3

Table 2. Trace and det of empirical MSE matrix with q
outliers in addition to n observations, f the bi-exponential

q 0 20 40 60 80

Tr(MSEn) LS 13607 35039 45150 128408 20347
MHD 3844 5326 35550 17870 2864
ME 3868 4771 5858 17866 2851

det(MSEn) LS 356.7 418.0 953.6 729.2 1244.9
MHD 47.3 143.9 9009.6 316.0 246.0
ME 42.1 101.7 209.1 192.7 132.4

We now add q outliers (N (2, 10), randomly allocated
among the εj’s, j = 1, . . . , n + q) to the n observations
obtained for f the bi-exponential; MSEn is computed for
n = 100. Table 2 shows these outliers have little influ-
ence over the ME estimator. This result would deserve fur-
ther studies, following those for the MHD estimator, see
respectively [17, 18] and [9] for the parametric and semi-
parametric cases.
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