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ABSTRACT

A bootstrap filter algorithm, which uses a sequence of the
number of stars to estimate the attitude of a spinning object,
is presented. This choice of measurement makes the algo-
rithm practicable to apply to the spinning object without any
initial acquisition lock. The statistical model of measure-
ment is derived and incorporated to make star-density map.
The conic fitting method is used to obtain measurements
in the star sensor images. The simulation result is presented
which demonstrates the ability of attitude estimation and the
fast convergence property of the proposed algorithm.

1. INTRODUCTION

The problem of determining the attitude of an object us-
ing imaging sensors and star catalog has been researched in
the past, using various approaches. The attitude estimation
method based on the extended Kalman filter (EKF) using
vector measurements from star sensor has been widely used
for the attitude determination of a satellite (or spacecraft)
[1]. In this method, the attitude represented by a quaternion,
which is convertible to the direction cosine matrix (DCM)
or the Euler angles, is evaluated with pairs of vector of the
stars which are observed in the body frame and pairs of unit
vector of corresponding stars in the ECI frame which can be
obtained from star catalog by identifying the stars through
pattern matching. For a spinning object, however, vector
observations are not simple or impossible to obtain due to
the rotation of the object. Moreover, a pattern matching pro-
cess for the identification of stars usually needs high com-
putational power.

A new attitude determination method which does not
need vector observations is introduced here. In this method,
the number of stars in the field of view (FOV) is used for
the measurement. The statistical model of measurement is
derived and a substantial measuring method of the number
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of stars is suggested. The bootstrap filter is used because the
system dealt in this work is nonlinear and has non-Gaussian
noise model.

The problem considered in this work is stated in Sec-
tion 2. The measurement obtaining method is described in
Section 3. In Section 4 an attitude determination algorithm
is presented. Section 5 presents the result of simulation of
algorithm, and the conclusions are discussed in Section 6.

2. PROBLEM STATEMENT

We wish to estimate the attitude of a spinning object. For
the representation of the attitude of an object, we choose
the right ascension, α, and the declination, β, in the Earth-
centered inertial (ECI) coordinate. With this representation,
we need to know at least two vectors’ direction of the body-
fixed (BF) frame to determine the attitude.

2.1. State model

We assume that dual star sensors’ optical axes are identical
to the x-axis and the y-axis of the BF frame as in fig. 1(a).
The state vector is

x =
[

αx βx αy βy

]T
, (1)

where subscript x and y represent the x-axis and the y-axis
respectively.

In the ECI frame, the unit vector lied along each axis of
the BF frame is a function of state elements and expressed
as

ue
x =

[
cos βx cos αx cos βx sin αx sin βx

]T
, (2)

ue
y =

[
cos βy cos αy cos βy sin αy sin βy

]T
, (3)

ue
z =

ue
x × ue

y∥∥ue
x × ue

y

∥∥
2

, (4)

where the superscript (·)e means the quantity in the ECI
frame and × denotes the cross product.
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Fig. 1. The BF frame (a) and Star trace (b).

The DCM, C, can be expressed by unit vectors as

C =
[

ue
x ue

y ue
z

]T
. (5)

For a spinning object, the BF frame rotates with respect to
the ECI frame. Denote the angular rate vector of this rota-
tion by ω̃ = [ωx ωy ωz]T . It is well known that the rate of
change of C is given by

dC
dt

= CΩ, (6)

where

Ω =

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ .

It is assumed that the measured angular rate, ω̃, from the
gyros has a zero-mean white-noise, δω; hence

ω̃ = ω̄ + δω, (7)

where ω̄ is the true angular rate vector.
The DCM propagates according to (6). Therefore, the

rotation dynamic model can be represented by

xk+1 = f(xk,wk; ω̄k) (8)

where wkis the process noise due to the uncertainty of the
angular rate of the covariance Q = σ2

ωI3×3.

2.2. Measurement model

A sequence of the number of stars in the FOV of star sensor
is used for the measurement. To obtain statistical response
of the star sensor, we assumed the followings. First, the
star catalog contains all stars in the sky. Second, the mag-
nitude of each star recorded in star catalog has the normal
pdf. Third, the star sensor has the exact detection threshold.
Finally, the FOV of the star sensor has a circular shape.

Let Np be the number of stars in the FOV when the di-
rection of the optical axis of the star sensor points the po-
sition p (α right ascension, β declination) and mth be the

detection threshold magnitude of the star sensor. From the
second assumption, the magnitude of the ith star is normally
distributed,N(mi, σ

2) and the detection probability of the
ith star is given by

pi =
∫ mth

−∞

1√
2πσ

exp
(
− (x − mi)2

2σ2

)
dx. (9)

The mean, µi, and variance, σ2
i , of the detection probability

of the ith star are given by

µi = pi, (10)

σ2
i = pi(1 − pi). (11)

Let np = p1 + p2 + · · · + pNp be a set of Np independent
random variates and each pi has a binomial distribution with
mean of (10) and variance of (11). The random variate np

is then approximately normally distributed with

µnp =
Np∑
i=1

pi, (12)

σ2
np

=
Np∑
i=1

pi(1 − pi). (13)

From the above equations (12) and (13), we can know
the statistical number of stars detected by star sensor ap-
proximately has a normal distribution and obtain the star
density maps which are functions of the magnitude thresh-
old mth, the direction of sensor’s optical axis and the FOV.
Figure 2 (a) and (b) show the star-density mean map hµ(x)
and the star-density variance map hσ2(x), respectively, ob-
tained from the Smithsonian Astrophysical Observatory (SAO)
star catalog assuming that mth = 6 and 10◦ FOV. The grid
size of star-density map is 1◦ × 1◦. For a sub-grid region,
the mean and variance values are computed by the bilinear
interpolation.

The measured number of stars, finally, can be modeled
as

zk = h(xk) + vk, (14)

where

h(xk) ≡
[

N(hµ(xx
k), hσ2(xx

k))
N(hµ(xy

k), hσ2(xy
k))

]
,

vk ≡
[

η(xx
k) + qx

k

η(xy
k) + qy

k

]
,

where the η is the digitization error caused by the bilinear
interpolation and qk is the two level quantization error be-
cause the measurement zk is in finite integer set. Here, we
set the state as x = [xx xy] where xx = [αx βx]T and
xy = [αy βy]T.
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Fig. 2. Star-density mean map (a) and variance map (b).

3. ACQUISITION OF MEASUREMENT

Because the BF frame rotates with an angular rate in the
spinning object, the stars trace some trajectories in the im-
age plane. In our work it is assumed that the angular rate
is constant between the measurement interval (i.e. exposure
time of the star sensor). Under this assumption, the rotation
of the spinning object can be represented with the rotation
axis n = [nx ny nz]T and the rotation angle, θ, given by

n = ω/ ‖ω‖2 , (15)

θ = ‖ω‖2 · ∆t, (16)

where ∆t is the measurement interval time. As shown in
the fig. 1(b), the unit vector to a star in the BF frame shaped
a cone with the rotation axis n as the central axis. The inter-
section of this cone and the image plane, the conic section,
determines the star trace. The rotation axis n also intersects
the image plane at point r given by

rx = (mx, nx) =
(

ny

nx
f,

nz

nx
f

)
, (17)

ry = (my, ny) =
(
−nx

ny
f,

nz

ny
f

)
, (18)

where (m,n) represents the position in the image coordinate.
We can measure the number of stars by counting the

number of connected conic sections in a radial manner with
this point r as a center because conic sections representing
star traces do not intersect mutually.

3.1. Pre-processing

A pre-processing of star sensor images is needed before the
acquisition of star traces in the image. This process is com-
posed of three steps. We apply an thresholding scheme to
distinguish between star traces and background in the star
sensor image. Secondly, a morphology-based thinning tech-
nique is used to get one-pixel wide traces [2]. Intersections
are detected by a window-based probing process and re-
moved. This pre-processing results in multiple connected
traces coming from multiple stars.

3.2. Conic fitting

A star trace shapes a conic section which can be described
by the following equation:

Q(x, y) = Ax2+2Bxy+Cy2+2Dx+2Ey+F = 0, (19)

where A, B and C are not simultaneously zero. We should
fit a conic section to a set of N connected points {xi} =
{(xi, yi)} (i = 1, . . . , N) obtained from the pre-processing.
There’re several solutions for solving conic fitting problem
with these noisy data [3]. Among them, the least-squares
fitting with normalization constraint A + C = 1 is a com-
mon practice for its ease of implementation. We added a
constraint that the point r is on the major axis of the conic
section (but not a center or a focus) to the basic least-squares
fitting. This constraint can be written as E/D = n/m. All
conic section can then be described by a vector p = [A B D F ]T.
Given N points, we have the following vector equation:

Ap = b, (20)

where
A = [a1,a2, · · · ,aN]T,

b = [b1, b1, · · · , bN]T,

where

ai = [x2
i − y2

i , 2xiyi, 2(xi + n/m)yi, 1]T,

bi = −y2
i .

The least-squares solution is given by

p = (ATA)−1ATb. (21)

3.3. Overlapping of star traces

Arbitrary two stars having same angle with respect to n may
have overlapped traces according to the angular rate and to
the position in the ECI frame. To cope with this case, we
introduced a length comparison method. In this method,
we compare the angular length γ of detected trace with the
rotation angle obtained from gyro measurements with (16).
The angular length γ can be obtained by

γ = cos−1

(
sTt

‖s‖2 · ‖t‖2

)
, (22)

where s is the vector from the point r to the start point p of
trace and t from the point r to the end point q. Due to the
noise in the angular rate, we should consider the variance
of the rotation angle which is modeled as σ2

θ = σ2
ω. When

there is n overlapped stars in one trace, then, the length com-
parison yields

γ ≥ nθ ± kσθ, (23)

where k is a constant.
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4. BOOTSTRAP FILTERING

As can be seen from (8) and (14), the system model is highly
nonlinear and the measurement model has a non-Gaussian
probability distribution. We used a bootstrap filtering method
to estimate the state [4]. The implementation of the boot-
strap filter is as follows.
1. Initialization: Generate {x1(i)}N

i=1 drawn from p(x1|Z0) =
p(x1).
2. Measurement Update: Update the weights by the like-
lihood of samples according to (14) ζi = p(zk|x̂k(i)), i =
1, 2, · · · , N, and normalize to ζi = ζi/

∑
i ζi.

3. Resampling Procedure: Take N samples {xk(i)}N
i=1, so

that P [xk(j) = x̂k(i)] = ζi, for any j.
Take, x̂k = 1

N

∑N
i=1 xk(i).

4. Time Update: Take a wk from (8), and get x̂k+1(i),
(i = 1, 2, · · · , N) by numerically integration of (6).
5. Increase time step and iterate to item 2.

5. SIMULATION

To evaluate the performance of the proposed attitude de-
termination method, we consider a spinning object with an
initial true state [21.7 − 38.3 136.8 50.7]T (deg.) and a
constant angular rate [−0.01 0.02 − 0.01]T (deg./sec).
Each component of the gyro measurement ω̃ has an addi-
tive white noise with 0.5 arc-sec. The time interval between
measurements ∆t is 200 seconds. The sample size N is
2000. Figure 3(a) shows one of synthetic star sensor images
and the detected conic section is given in the fig. 3(b).

To appraise the performance of the estimate, we quote
convergence index defined as

Jk ≡ ‖C(xk) − C(x̂k)‖2
F , (24)

where x̂k is the estimated state vector. Figure 4(a) shows
the behavior of the convergence index. After converging,
the convergence index is under 10−4. Each component of
estimation errors is depicted in fig. 4(b).

When lager number of samples are used, the proposed
algorithm may give more accurate estimate, on the other
hand, computational load increases.

6. CONCLUSION

We have proposed the attitude determination method of a
spinning object based on the bootstrap filter using dual star
sensors. We derived the appropriate measurement equa-
tion which is modeled as a non-Gaussian probability density
function. The method for measuring the number of stars in
the star sensor image in which stars make traces also was
suggested. In the simulation study, the proposed algorithm
gave accurate estimates and showed fast convergence prop-
erties.

(a) (b)

Fig. 3. Star sensor image (a) and the detected conic sections
(b).
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Fig. 4. Behavior of the convergence index (a) and the esti-
mation errors for each state element (b).

The proposed method using dual sensors can easily be
modified to a method using only one sensor by choosing the
Euler angles (or quaternion)as system state. This modifica-
tion, however, may need more samples and more computa-
tional costs.
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