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ABSTRACT
Finite alphabet optimisation problems occur in many fields of
engineering, including wireless communications and blind source
separation. An optimal solution through exhaustive search is
often computationally intractable, so sub-optimal solutions are
employed. One popular approach is to simply round each element
of the unconstrained solution to the nearest member of the
known alphabet. This paper presents a novel approach which has
better error performance than rounding but with only a moderate
increase in complexity. The method uses Fisher Information
to determine the order in which optimisation is carried out.
The inverse of the Fisher Information Matrix indicates which
element of the estimate is, on average, most likely to have the
smallest error. Thus the first element to be optimised is the one
most likely to be correct. This then improves the likelihood of
subsequent elements being correct. The method is developed and
an example is included of its application to the discrete blind
source separation problem.

1. INTRODUCTION

Finite alphabet optimisation problems occur in many fields of
engineering, including wireless communications [3], multi-user
detection [6] and blind source separation [2], [5]. Generally, the
aim is to determine a solution to a parameter vector, where
the elements of the vector are constrained to lie in a finite
alphabet. In theory, the finite alphabet problem should be simpler
to solve than the unconstrained case, since one may conduct an
exhaustive search of all possible permutations of the parameter
vector from the finite alphabet and select the permutation which
produces the smallest cost value. Whilst this approach would
have excellent error performance, in practice it is computationally
intractable in all but the simplest of cases. As the dimension of the
parameter vector increases the number of permutations increases
exponentially, making the exhaustive search impractical even for
simple binary alphabets. A popular alternative is to perform
a computationally simpler unconstrained optimisation and then
round the results to the nearest element of the finite alphabet.
Whilst this is practical, it has relatively poor error performance.

Decision directed optimisation refers to a class of algorithms
in which early decisions are used to influence later decisions. In
such cases the order in which the parameters are decoded is a
powerful degree of freedom which can be exploited. For example,
in multi-user wireless communications the strongest user signal
may be decoded first, with the remaining signals regarded as
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noise. The recovered signal is then re-encoded and subtracted
from the original received signal. The next strongest signal is
then decoded, treating the remaining signals as noise, and the
procedure is repeated [7]. Because early errors will propagate
through the decoding process the order in which elements are
decoded is critical. This idea is extended in [6], where detection
is no longer assumed to be in the order of decreasing signal
energy. The algorithms in [6] rely on the effective energy in the
signal as the signal to noise ratio becomes very large and so the
complete

� �
possible decoding orders (for

�
users) is considered

and the order of detection is determined by an asymptotic energy
metric.

In [3], Manton proposed a different decision directed strategy
using Fisher Information as the ordering metric. The general
method will be developed in section two. It is called Fisher
Information Decision Directed optimisation because it relies on
the inverse of the Fisher Information Matrix (ie, the Cramer-Rao
Lower Bound (CRLB)) to determine the best candidate element
to be optimised next. Fisher Information provides a mechanism
for deciding which element of a parameter vector is, on average,
most likely to be correct. This allows us to iteratively fix the
vector elements, beginning with the one most likely to be correct.
This paper then extends these ideas by investigating the results
of fixing more than one bit at a time. It has been shown in
[3] that by improving the likelihood of initial correct decisions,
the likelihood of subsequent correct decisions is also improved.
In section three a weighted probability of bit error is used to
measure the balance between improved error performance and
increased complexity and it is shown that for a binary alphabet
a minimum of two elements should be fixed simultaneously.
Section four provides an application example which applies this
technique to a finite alphabet blind source separation problem.
Fisher Information Decision Directed optimisation provides an
optimisation scheme which can be applied across the complete
range of finite alphabet problems.

2. FISHER INFORMATION DECISION DIRECTION

2.1. Fisher Information

Consider an observation vector � � � 	 �  � � � � where � � � �
is an � -dimensional parameter vector with elements drawn from
the finite alphabet � , � is a vector of real valued parameters
which may or may not be known, � is a noise vector and � has
a known probability density function � 	 � ! �  � � . It is assumed
that a suitable cost function exists, # 	 %� ! �  � � , where %� is an
estimate of � , and has a minimum when %� equals � . In order
to determine which element of %� to quantise first we evaluate the
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Fisher Information Matrix [1]� � � � � 	 � � � � � � � � � � � �  ! # $ %� ! � ' � � � � � � � � � �  ! # $ %� ! � $ '� � � � � � � � � �  ! # $ %� $ � ! ' � � � � � � � � � �  ! # $ %� $ � ' +,
(1)

where
� . /

is the expectation operator with respect to the noise,0 , and the derivative is with respect to the true value of � and� . It can be shown that under a zero mean white Gaussian noise
assumption the inverse of the Fisher Information Matrix is given
by [4]� � � � � 	 1 3 � 6 8 : < > @ 3 B 8 > 3 C 1 3 DD < > @ 8 B 3 > 8 C 1 3 G (2)

where > 3 � � H� ! , > 8 � � H� $ , and B 8 � � � > 8 J > @ 8 > 8 K 1 3 > @ 8 .
Note, however, that we need not calculate the Fisher Matrix with
respect to � if � is real valued. Thus, the inverse of the Fisher
Information Matrix with respect to � is the upper left block of
(2). If � is the only unknown parameter then (2) reduces to� � � 	 1 3 � 6 8 � > @ 3 > 3 ' 1 3 (3)

If the estimator L� is Fisher efficient (unbiased and attains the
CRLB) then the smallest value on the leading diagonal of the
inverse of the Fisher Information Matrix will indicate which
element of M� is likely to have the smallest error component. ie,� � � 	 1 3N # N � � < � L� N � � N 	 8 C Thus, if the ith element of the leading
diagonal is the smallest element on the diagonal then the ith
element of M� should be fixed first.

2.2. Fixing Process

Because � is drawn from a finite alphabet the ith element of L�
is set to the first alphabet value, P 3 . The remaining elements of L�
can take on continuous real values and the cost function Q � L� R S � � 	
is mimimised. The ith element of L� is set to the next alphabet
value, P 8 , and the process is repeated. Once all alphabet values
have been tried, the ith element of L� is fixed to the alphabet value
which produced the lowest cost function result. This element is
now locked in and does not change for the remainder of the
optimisation process. We now compute the Fisher Information
Matrix for the remaining unlocked elements of L� , identify the
next element to be tested and compute the cost function Q � L� R S � � 	
for each alphabet member. This second element is then locked
and we proceed to the third element, etc. This leads to Algorithm
1.

If the alphabet has U values then the optimisation procedure
must be carried out U V -times. We may generalise this procedure
by choosing to optimise more than one element of L� at each
iteration. For example, if we choose to optimise two elements at a
time then the procedure is more accurate, but must be carried outW � X8 times. If we optimise Y elements at a time then the procedure
must be carried out

W Z X� times. If we optimise V elements at
a time we return to enumerating all possible solutions, which
returns an optimal result but requires the procedure to be carried
out U X times.

In general the Fisher Information Matrix may depend on S , �
and � . In such circumstances the true value of � and � may not
be known and an initial estimate of each parameter vector must
be used to calculate the Fisher Information Matrix. The accuracy

Algorithm 1 Fisher Information Decision Directed Optimisation

1) Consider an observation vector S � ] � � � � 	 _ 0 . The
vector S a c d , � a P X is an V -dimensional source vector
with elements drawn from the finite alphabet P , � is a real
valued parameter vector and 0 a c d is a random Gaussian
noise vector. The least squares solution is to find the vectorL� a P X which minimises Q � L� R S � � 	

2) Evaluate the inverse of the Fisher Information Matrix where
the dimension of � is the number of unlocked elements
in L� .

� � � 	 1 3 � < > @ 3 B 8 > 3 C 1 3 , where > 3 � � H� ! , > 8 �� H� $ , and B 8 � � � > 8 J > @ 8 > 8 K 1 3 > @ 8 . Determine l �n o p q s u N � � � 	 1 3N # N .
3) Set L� N � P w where the number of elements in the

alphabet are x y y y z y y y | . Optimise the remaining real-
valued elements of L� and evaluate Q w � L� R S � � 	 . The notationQ w represents the cost function result when the alphabet
member P w is used.

4) Repeat step 3 for all | elements of P .
5) U � n o p q s u w Q w � L� R S � � 	 . Set L� N � P W

and lock.
6) Repeat step 2 until all elements of L� are locked.

of the estimate will affect the accuracy of the resulting matrix
and hence the order in which the bits are optimised. However,
the resulting order is unlikely to produce an error performance
any worse than simply rounding the vector to the nearest finite
alphabet member. If the estimate of � is close to the true � then
the error performance will be considerably better than simple
rounding.

3. COMPLEXITY STUDY

In order to examine the trade off between error performance
and complexity the procedure described in section two was
simulated using the simple observation vectorS � ~ � _ 0 (4)

where S a c 3 8 is the observation vector, � a P 3 8 is a x � -
dimensional source vector with elements drawn from the finite
alphabet P � � � x � , ~ a c 3 8 � 3 8 is a known, real valued matrix
and 0 a c 3 8 is a random Gaussian noise vector. The least squares
solution is to find the vector L� a P 3 8 which minimises� � L� 	 � � S � ~ L� � 8 (5)

and the procedure followed is shown in Algorithm 2.
Figure 1 compares the error performance for a simple rounding

algorithm and Fisher Information Decision Directed optimisation
for several values of Y . The Fisher method was tested optimising
one, two, three and four simultaneous bits. Clearly, even a one
bit Fisher scheme out performs the simple rounding approach,
but if we are prepared to accept some increased complexity then
the simultaneous optimisation of several bits at a time offers an
even greater improvement in error performance.

Figure 2 shows the complexity, in terms of the number of
iterations required, against the resultant probability of bit error for
several signal to noise ratios. A complexity of one indicates the
simple rounding method. Significantly, for a binary alphabet the
complexity involved for Y � x and Y � � is the same, and is rep-
resented by the vertical line in figure 2. However, figure 1 clearly
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Algorithm 2 Fisher Information Decision Directed Optimisation
- � � � � � 


1) Consider an observation vector � � � � � 
 . The vector
� � � � � , � � � � � is a � � -dimensional source vector
with elements drawn from the finite alphabet � � � � �  ,
and 
 � � � � is a random Gaussian noise vector. The
least squares solution is to find the vector "� � � � � which
minimises

$ % "� ' � * � , � "� * �
2) Evaluate the inverse of the Fisher Information Matrix where

the dimension of � is the number of unlocked elements in"� .
/ % � ' 1 � � 3 � 4 � 5 1 � . Determine 6 � 8 9 ; = ? A B / % � ' 1 �B D B .

3) Set "� B � � � . Optimise the remaining real-valued elements
of "� and evaluate

$
� % "� ' � * � , � "� * � . The notation$

� represents the cost function result when the alphabet
member � � � � is used.

4) Repeat step 3 for � � , � .
5) L � 8 9 ; = ? A N $ N % "� ' . Set "� B � � O

and lock.
6) Repeat step 2 until all elements of "� are locked.
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Fig. 1. Probability of bit error using the Fisher algorithm opti-
mising ’p’ bits simultaneously

shows that P � � offers an error performance improvement of up
to 10 dB over the P � � scheme. Thus, for a binary alphabet, the
Fisher Information Decision Directed algorithm should always be
implemented by optimising a minimum of two bits per iteration
as we obtain an error performance gain over the P � � scheme
with no additional computational cost.

A natural question which arises from this method is at what
point does the cost of the additional iterations outweigh the
improvement in the bit error rate? One way to determine this is by
using figure 2. If the anticipated signal to noise ratio environment
is known then the smallest complexity can be chosen which will
satisfy the required bit error rate. Alternatively, we can consider
the question as a trade off between probability of bit error and
complexity. In figure 3 the probability of bit error has been
“normalised” for a signal to noise ratio of 10, 20 and 30 dB
to create a weighted probability of bit error, where increased
complexity degrades the weighted error. The weighted probability
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Fig. 2. Probability of bit error against the complexity of the Fisher
algorithm in terms of the number of iterations. Curves are shown
for 0, 5, 10, 20 and 30 dB. Note that for p=1 and p=2 the number
of iterations required is the same, but p=2 offers a superior error
performance.

of bit error, S U , is given by

S U % W ' � S XX Z \ ] _`
where W b � c de represents the complexity. The exact units used
to measure complexity may vary with the application. In this
case the measure of complexity was the number of iterations
normalised to the P � � scheme. ie, W � �� g � c de . Figure 3 shows
that for low signal to noise ratios the improvement through Fisher
Information Decision Directed optimisation is quickly offset by
the increased complexity, such that the weighted probability of bit
error increases after P � � . However, at higher signal to noise
ratios there continues to be a relative performance gain up to

P � j .
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Fig. 3. Normalised probability of bit error weighted by the
increase in iterations required.
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4. BLIND SOURCE SEPARATION OF FINITE
ALPHABET SIGNALS

Signal separation involves recovering several source signals
when the only available information is a linear mix of the signals.
This typically occurs in narrow band array processing, where
the linear mixture results from the receiver array geometry. The
exact linear mixture is often unknown because no assumptions
are made about the array geometry. Thus, the received signal can
be modelled as �

� � � � 	 �  � � � � (6)

where � � � � � � is the source matrix and each row of �
represents 	 samples of a source signal. The mixing matrix,

� � � � � � , represents the geometry of the array and the
observation matrix,

�
� � � � � , is corrupted by Gaussian white

noise. We are interested in finding the least squares estimate of
� and � from the cost function

! � � � � $ & () *
� +

� � * � - (7)

An alternating projection algorithm was proposed in [5] which
makes use of the following property of the Frobenius norm:

$ & () . 0 *
� +

� � * � � $ & (3 5
6

7 . 0 * 8 � ; �
+

� = � ; � * � � - - -
� $ & (3 5

�
7 . 0 * 8 � 	 �

+
� = � 	 � * � (8)

Hence, minimisation over the signal vectors can be carried out
independently. For each = � F � the ML estimate H= � F � is obtained by
enumerating over all J � possible vectors = 5 K 7 � L , and choosing
the one which minimises

H= � F � � N O P $ & (3 R T V . 0 * 8 � F �
+

� =
5 K 7

* � � X � ; - - - J � - (9)

Whilst this approach provides an optimal solution, it quickly
becomes computationally intractable if the number of sources
to be separated or the alphabet are even moderately large. The
application of Fisher Information Decision Directed optimisation
provides a sub-optimal solution, but it is computationally achiev-
able. Figure 4 shows the error performance for a signal matrix

� � � \ � 6 _ _ and a mixing matrix � � � b � \ and compares
the Fisher Information approach against a rounding algorithm.
Because of the large amount of data available the performance
of the rounding algorithm is better here than for the vector case
of section three. However, for c � f the Fisher algorithm still
offers an error performance improvement of several dB over the
rounding algorithm.

5. CONCLUSION

The optimal solution to a finite alphabet optimisation problem
can be found through exhaustive search, but for problems of even
quite moderate size this approach quickly becomes computation-
ally intractable. A common sub-optimal solution is to perform an
unconstrained optimisation and then simply round each element
of the result to the nearest member of the known alphabet.
This paper has shown that Fisher Information Decision Directed
optimisation provides better error performance than the rounding
approach with only a moderate increase in complexity. For a
binary alphabet we have shown that simultaneosly optimising
two bits at a time provides an improved error performance
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Fig. 4. Fisher Information Decision Directed optimisation of a
BSS problem with eight sources

with no additional complexity over fixing one bit at a time. In
addition, if we weight the probability of bit error by the increased
number of iterations required then it has been shown that relative
performance improves in a higher signal to noise ratio environ-
ment. It has been demonstrated that Fisher Information Decision
Directed optimisation can be applied to the finite alphabet blind
source separation problem when the number of sources makes an
exhaustive search approach impractical.
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