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ABSTRACT

Many parametric statistical models suffer from “intrinsic ambigu-
ities” in the sense that the distribution of the observation vector is
invariant to smooth, structured changes in the model’s parameters.
The fact that certain members of the parametric statistical family
are locally undistinguishable makes the Fisher information matrix
(FIM) associated to the given statistical model singular. We exam-
ine such degenerate deterministic parameter estimation problems
from a Riemannian geometric perspective. We start by replac-
ing the original (ambiguous) parameter set by a lower-dimensional
Riemannian (non-ambiguous) parameter set. The new parameter
set comes in the form of a quotient space and is obtained by iden-
tifying equivalent family members in the initial parameterization.
We specialize recently developed extensions of the Cramér-Rao
bound (CRB) for the Riemannian setup to this particular setting.
This offers a re-interpretation of the CRB inequality involving the
pseudo-inverse of the FIM. Also, we present a lower bound on
the variance (computed with respect to the geodesic distance) of
unbiased estimators taking values in the quotient space. Geomet-
rically, this corresponds to a fundamental limit on the capability of
these estimators in discriminating adjacent parameter equivalence
classes in the original problem parameterization. A numerical ex-
ample involving the blind identification of single-input multiple-
output (SIMO) channels driven by a Gaussian source is worked
out.

1. INTRODUCTION

Let F = {fθ : θ ∈ Θ} represent a parametric statistical model
for the observation vector x ∈ R

n. More precisely, F denotes a
family of positive probability density functions over R

n, that is,
fθ : R

n → R, fθ(x) > 0 for all x ∈ R
n and

∫
fθ dµ = 1, for

all θ ∈ Θ. Here, µ represents Lebesgue measure. We also define
fx : Θ → R by fx(θ) = fθ(x). The parameter θ takes values
in an open subset Θ of some Euclidean space R

p. Let the Fisher
information matrix (FIM) associated to the statistical model F at
the point θ be denoted by

Iθ = Eθ

{
∇lX(θ)∇lX(θ)T

}
(1)
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where lx : Θ → R stands for the log-likelihood lx(θ) = ln fθ(x)
and ∇ denotes the gradient operator. That is,

Iθ =

∫
Rn

∇lx(θ)∇lx(θ)T fθ(x) dµ(x).

Let b̂ : R
n → R

m, x �→ b̂(x), denote some estimator with mean
value b : Θ → R

m,

b(θ) = Eθ

{
b̂(X)

}
=

∫
Rn

b̂(x) fθ(x) dµ(x).

If the FIM is non-singular then we have the classical Cramér-Rao
bound (CRB) inequality

Covθ(b̂) � Db(θ) I−1
θ Db(θ)T , (2)

where

Covθ(b̂) = Eθ

{(
b̂(X) − b(θ)

) (
b̂(X) − b(θ)

)T
}

is the covariance matrix of b̂, Db represents the derivative of b and
A � B means that A − B is semidefinite positive. If the FIM is
singular, we have the extended CRB inequality [1, 2]

Covθ(b̂) � Db(θ) I+
θ Db(θ)T , (3)

where I+
θ denotes the Moore-Penrose pseudoinverse of Iθ . We are

interested in scenarios where Iθ is singular.

Local ambiguity. In this paper, we assume that the singularity of
the FIM is reflecting local ambiguities in the statistical model F .
That is, certain smooth changes in the parameter θ leave the distri-
bution of the observation vector x unaltered. This induces singular
information matrices. For example, suppose that θ(t) denotes a
smooth curve in Θ such that θ(0) = θ0,

θ̇(0) =
d

dt
θ(t)

∣∣
t=0

= v �= 0,

and fθ(t) = fθ0 (as real-valued functions over R
n) for all t. That

is, the distribution of the observation x is invariant to the motion
θ(t) in the parameter set Θ. Taking the derivative with respect to
t in the equality fx(θ(t)) = fx(θ0) and evaluating at t = 0 yields
∇lx(θ0)

T v = 0 (for all x). Thus,

vT Iθ0v = Eθ0

{(
∇lX(θ0)

T v
)2

}
= 0,
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and Iθ0 is singular.

Model reparameterization. The main idea in this paper con-
sists in switching the analysis to a new parametric family F� =
{f�

θ : θ� ∈ Θ�} with a new parameter set Θ� such that the as-
sociated FIM (more precisely, a tensor-like analogue of it) is no
longer singular. The new parameter set Θ� is obtained from Θ by
“quotienting out” equivalent family members in F . That is, in-
troduce the equivalence relation ∼ on Θ by declaring θ1 ∼ θ2 if
fθ1 = fθ2 holds µ-almost everywhere. In words, the relation ∼
identifies (groups together) members in F which induce the same
distribution on the data vector x. The equivalence relation ∼ par-
titions the parameter space Θ into disjoint equivalence classes and
we let Θ∗ = Θ/ ∼ be the corresponding quotient space. We
denote by π : Θ → Θ� the map which projects θ ∈ Θ to its
equivalence class π(θ) ∈ Θ∗, also written [θ]. For θ� ∈ Θ�, the
subset Fθ∗ = π−1(θ�) = {θ : π(θ) = θ�} ⊂ Θ is termed the
fiber over θ�. See figure 1 for a sketch. The reparameterization of

Θ

θ

Θ�

θ� = [θ]

π

Fθ�

Fη�

η

η� = [η]

Fig. 1. Two points in Θ� and corresponding fibers in Θ

F by Θ� corresponds to the new family F∗ = {fθ� : θ� ∈ Θ�},
where fθ� = fθ for some θ in the fiber Fθ� (note that the particular
choice of θ is immaterial).

Assumptions. In this paper, we assume that Θ∗ can be given
the structure of a Riemannian manifold with the projection map
π as a Riemannian submersion (the reader is assumed to be fa-
miliar with basic concepts of Riemannian geometry [3, 4]). An
example of such a construction, in the context of blind identi-
fication of single-input multiple-output (SIMO) channels, is car-
ried out in section 4. Loosely, π being a Riemannian submersion
means that the geometries of Θ and Θ� interface nicely (through
π). In more precise terms, let dπ : TθΘ → Tθ�Θ� denote the
push-forward (derivative) of π. Then, the subspace Ker dπ =
{Xθ ∈ TθΘ : dπ(Xθ) = 0} is termed the vertical subspace of
the tangent space TθΘ and it is denoted in the sequel by Vθ . It
is the tangent space to the fiber F[θ] at θ. Its orthogonal com-
plement (with respect to the metric on Θ) is called the horizontal

subspace, written Hθ . The projection map π is a Riemannian sub-
mersion if and only if dπ : Hθ → T[θ]Θ

� is an isometry (with
respect to the Riemannian metrics in Θ and Θ�). Figure 2 illus-
trates these concepts. Moreover, we assume that Ker Iθ 	 Vθ , that

Hθ

T[θ]Θ
�

[θ]

dπ (Xθ)

dπ (Yθ)

Xθ

Yθ
θ

Vθ

Θ

dπ

Θ�

Fig. 2. The map dπ : Hθ → T[θ]Θ
� is an isometry

is, the kernel of the FIM at the point θ can be identified with the
vertical space Vθ . This technical condition captures the notion that
motions along the fibers are ambiguous, whereas motions across
the fibers are not.

Paper organization. In section 2, we investigate a first conse-
quence of our analytical shift from the parameter set Θ to Θ�.
More precisely, we show that, when we apply to our context the
smooth manifold generalization of the classical CRB inequality (2)
in [5], the extended CRB inequality in (3) is recovered. This pro-
vides an interpretation of the extended inequality (3): it is nothing
more than the “classical” CRB (2) read, not in the original pa-
rameter space Θ, but in the coset space Θ�. In section 3, we con-
cern ourselves with estimation over Θ�. Remark that, although the
original parameter θ is not identifiable, its equivalence class [θ] (or
fiber) can be. We start by presenting a refinement of the intrin-
sic variance lower bound (IVLB) presented in [6] (see also [7]).
The IVLB assumes a parametric statistical family indexed over
a Riemannian manifold P and places a fundamental limit on the
variance of estimators taking values in a (possibly distinct) Rie-
mannian manifold M . The variance of the estimators is measured
with respect to the intrinsic (geodesic) distance in M . We spe-
cialize the IVLB to our case (P = M = Θ�), thus obtaining a
lower bound on the capability of estimators in resolving fibers in
the original problem parameterization. In section 4, we analyse
the problem of blind identification of SIMO channels excited by
a complex, unit-power, white Gaussian source from the viewpoint
proposed herein. Note that, as it is well-known, such channels can
only be resolved up to a phase ambiguity. We compute the IVLB
associated to this problem and present some computer simulations,
using the subspace-based method in [8] as the estimator, to illus-
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trate the tightness of the bound.

2. INTERPRETATION OF THE EXTENDED CRB
INEQUALITY

In this section, we show that the extended CRB inequality (3) is
nothing else than the “classical” CRB inequality (2) viewed in the
coset space Θ�. For this, we recall that [5] provides the general-
ization of the classical CRB (2) for scenarios where the parametric
family is indexed by a smooth manifold P and the estimator takes
values in another smooth manifold M . This CRB generalization is
termed the information inequality in theorem 3.2 [5] and reduces
to (2) when we let both P and M be Euclidean spaces.

It can be shown (using lemma 3.1 in [5] but details omitted
due to lack of space) that the information inequality in [5] (with
the squared Euclidean distance as the loss function) corresponds
in our setting (that is, with P = Θ� and M = R

m) to

wT Covθ(b̂) w ≥ max
J[θ](X[θ], X[θ]) = 1

〈w, db�(X[θ])〉2 (4)

for all w ∈ R
m and θ ∈ Θ. In (4), J[θ] : T[θ]Θ

� × T[θ]Θ
� → R

denotes the Fisher information form associated with F∗, see [5],
b� : Θ� → R is defined by b�([θ]) = b(θ) (that is, we let b de-
scend to the quotient), db� denotes the derivative of b�, and 〈·, ·〉
represents the Riemannian metric in R

m (that is, the usual Eu-
clidean inner product under the canonical identification TyR

m 	
R

m). Now, exploiting the fact that i) dπ : Hθ → T[θ]Θ
� is

a linear isomorphism, ii) b� ◦ π = b and iii) Jθ(Xθ, Xθ) =
J[θ](dπ(Xθ), dπ(Xθ)), the right-hand side of (4) can be written
as

max
Jθ(Xθ, Xθ) = 1

Xθ ∈ Hθ

〈w, db(Xθ)〉2, (5)

where Jθ the Fisher information form associated with F . Under
the canonical identification TθΘ = TθR

p 	 R
p, any tangent vec-

tor in TθΘ, say Xθ , can be identified with a vector in R
p, say

u, and within this identification we have db(xθ) = Db(θ)u and
Jθ(Xθ, Xθ) = uT Iθu. Moreover, if Xθ is horizontal, then u must
be orthogonal to the kernel of the FIM Iθ (recall our assumption
Ker Iθ 	 Vθ), that is, if

Iθ =
[

H V
] [

Λ
0

] [
HT

V T

]
(6)

denotes an eigenvalue decomposition of Iθ , with H orthonormal
and the diagonal matrix Λ positive definite, then u = Hα for some
vector α. Thus, (5) can be rewritten as

max
αT Λα = 1

(
wT Db(θ)Hα

)2

,

which evaluates to

wT Db(θ)HΛ−1HT Db(θ)T w = wT Db(θ)I+
θ Db(θ)T w.

In sum, the information inequality in [5] applied to the statistical
model F∗ in the quotient space Θ∗ boils down to

wT Covθ(b̂)w ≥ wT Db(θ)I+
θ Db(θ)T w

for all w. Thus, Covθ(b̂) � Db(θ)I+
θ Db(θ)T , which is the ex-

tended CRB inequality in (3). The point here is that, as just seen,

the extended CRB inequality (3) possesses a (previously unsus-
pected) geometrical meaning: it is just a re-statement of the “clas-
sical” CRB inequality (more precisely, its generalization to the
manifold setting) associated with the parameterization Θ� but for-
mulated in terms of the initial parameterization Θ.

3. INTRINSIC VARIANCE LOWER BOUND (IVLB)

The intrinsic variance lower bound (IVLB) presented in [6] (see
also [7]) provides a fundamental limit on the variance of esti-
mators taking values in a Riemannian manifold M , and associ-
ated to parametric families indexed by a Riemannian manifold P .
The variance of the estimators is computed with respect to the
geodesic distance in M . In can be shown (details omitted due
to paper length restricitions) that the IVLB applied to our setting
(P = Θ�, M = R

m) states (within some omitted technical con-
ditions, see [6]) that if θ̂� : R

m → Θ�, x �→ θ̂�, denotes an
unbiased estimator for the equivalence class [θ] (see [7] for the
precise meaning of the mean value of an estimator taking values in
a Riemannian manifold), then

var[θ](θ̂�) = Eθ

{
d

(
θ̂�(X), [θ]

)2
}

(7)

obeys the inequality

var[θ](θ̂�) ≥
4C + 3λ[θ] −

√
λ[θ]

(
9λ[θ] + 24C

)
8
3
C2

, (8)

where in (7) d(θ�, η�) denotes the geodesic distance between the
points θ�, η� ∈ Θ� and in (8) C denotes an upper bound on the
sectional curvature of Θ� and λ[θ] is the minimum eigenvalue of
the Fisher information form J[θ] associated with F�.

In our case, since π : Θ → Θ� denotes a Riemannian sub-
mersion λ[θ] can be computed as

λ[θ] = min
〈Xθ, Xθ〉 = 1

Xθ ∈ Hθ

Jθ(Xθ, Xθ),

or, in terms of the eigenvalue decomposition in (6), λ[θ] is the mini-
mum eigenvalue of Λ. Moreover, by O’Neill’s formula [4, theorem
3.61, pp. 127] and since the curvature of Θ is zero (flat Euclidean
space) we have

C ≤ max
X,Y

3

4

∣∣∣[X, Y ]V
∣∣∣2 , (9)

where the maximum is over all pairs (X, Y ) of smooth, horizon-
tal, orthonormal vector fields in Θ; here, [X, Y ] denotes the Lie
bracket of X and Y , and [X, Y ]V stands for the orthogonal pro-
jection onto the vertical subspace.

4. EXAMPLE

Consider a SIMO channel x(t) = h(z)s(t) + w(t), where x(t) ∈
C

L denotes the output, h(z) = h(0)+h(1)z−1 + · · ·+h(D)z−D

is the z-transform of the finite-impulse response of the channel
(h(d) ∈ C

L for all d), s(t) ∈ C denotes a zero-mean, unit-
power, complex circular white Gaussian source and w(t) ∈ C

L

denotes zero-mean, white spatio temporal additive complex Gaus-
sian noise with power σ2. If T consecutive data samples are ob-
served and stacked in the LT -dimensional column vector x, then
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x denotes a zero-mean Gaussian vector with a covariance matrix
C(h(z)) = E

{
xxH

}
(xH stands for the conjugate transpose of

x) which satisfies C(h(z)) = C(h(z)eiφ) for all φ. Thus, (as it
is well-known) the channel is only identifiable up to a phase ambi-
guity.

The Riemannian manifold Θ. In this example, the parameter
to be estimated is the SIMO channel h(z) which can be viewed
as a point in the parameter space Θ 	 C

L(D+1) − {0} (the ori-
gin has been excluded) by making the correspondence h(z) �→
[ h(0) h(1) · · · h(D) ]. Note that, Th(z)Θ can be naturally iden-
tified with C

L(D+1) and, within this identification, the canonical
Riemannian metric is given by 〈Xh(z), Yh(z)〉 = Re tr

(
∆H

y ∆x

)
if Xh(z) 	 ∆x ∈ C

L(D+1) and Yh(z) 	 ∆y ∈ C
L(D+1) (Re z

denotes the real part of the complex number z and tr(A) is the
trace of the matrix A). The parametric family is given by F =
{N (0, C(h(z))) : h(z) ∈ Θ}, where N (µ, Σ) denotes the com-
plex Gaussian distribution with mean µ and covariance Σ.

The smooth manifold Θ�. Define a right action of the Lie group
S
1 = {u ∈ C : |u| = 1} on Θ as ϕ : Θ×S

1 → Θ, ϕ(h(z), u) =
h(z)u. In the sequel, we use the notation ϕ (h(z), u) = h(z) · u.
For given h(z) ∈ Θ, the subset h(z)S1 =

{
h(z) · u : u ∈ S

1
} ⊂

Θ is termed the orbit of h(z) under the action of S
1. The space Θ

is the disjoint union of all orbits generated by S
1. The set of orbits

is called the orbit space and is denoted by Θ/S
1. Now, it can be

seen that two members h(z) and g(z) in the statistical family F
are equivalent, that is, h(z) ∼ g(z), if and only if h(z) and g(z)
are in the same orbit. Thus, the quotient space Θ� = Θ/ ∼ has
a natural identification with the orbit space Θ/S

1. Moreover, it is
readily seen that the action ϕ is smooth, free and proper. Thus, we
are covered by theorem 1.95 in [4, page 32]. It states that the or-
bit space Θ/S

1, hence Θ� by identification, has an unique smooth
structure making the canonical projection π : Θ → Θ� a smooth
submersion.

The Riemannian manifold Θ�. Up to this point, the quotient
space is only a smooth manifold. We have not yet inserted in it
a Riemannian structure. To induce such geometric structure, we
note that the Lie group S

1 acts on Θ by isometries, that is, for any
u ∈ S

1, the derivative dϕu : Th(z)Θ → Th(z)uΘ of the smooth
map ϕu : Θ → Θ, ϕu(h(z)) = ϕ(h(z), u) is a linear isometry,
as it is easily checked. Thus, we can apply proposition 2.28 in [4,
page 64] which asserts that Θ� has an unique Riemannian metric
making the canonical projection π a Riemannian submersion.

Geodesic distance and sectional curvature in Θ�. The geodesic
distance between the points [h(z)] and [g(z)] in Θ� (with respect
to the Riemannian structure in Θ�) can be obtained in closed-form
(details omitted) and it is given by

d([h(z)], [g(z)]) =

√
‖H‖2 + ‖G‖2 − 2|tr(GHH)|, (10)

where H = [ h(0) h(1) · · · h(D) ], G = [ g(0) g(1) · · · g(D) ]
and ‖A‖ denotes the Frobenius norm of A. Moreover, by ex-
ploiting O’Neill’s formula [4, theorem 3.61, pp. 127] it can be
shown that the maximum of all sectional curvatures at the point
[h(z)] ∈ Θ� is given by K[h(z)] = 3/ ‖H‖2.

Computer simulations. We performed some computer simula-
tions to assess the tightness of the IVLB equality in (8). A nomi-
nal SIMO channel h0(z) with L = 4 outputs and memory degree

D = 2 was randomly generated (and kept fixed throughout the
simulations). We assume that the power of the channel h0(z) is
known within a 50% error, that is, the value C = 3/(0.5 ‖H0‖)2
is used in the IVLB (8).

The signal-to-noise ratio is fixed at 20 dB and the data packet
length is varied between T = 25 and T = 100. For each T , the
variance of the subspace-based channel estimator in [8], computed
in terms of the geodesic distance (10), is estimated by Monte-Carlo
averaging. Figure 3 shows the results obtained. It can be seen
that the performance of the subspace-based channel estimator in
discriminating fibers in Θ is close to the fundamental limit placed
by the IVLB.

20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

T

Fig. 3. Estimated var[θ](θ̂�) (dashed) and IVLB (solid)
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