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ABSTRACT

We describe two multivariate statistical dependence mea-
sures which can be orthogonally decomposed to separate
the effects of pairwise, triplewise, and higher order interac-
tions between the random variables. These decompositions
provide a convenient method of analyzing statistical depen-
dencies between large groups of random variables, within
which smaller “sub-groups” may exhibit dependencies sep-
arately from the rest of the variables. The first dependence
measure is a generalization of Pearson’s φ2, and we decom-
pose it using an orthonormal series expansion of joint prob-
ability density functions. The second measure is based on
the Kullback-Leibler distance, and we decompose it using
information geometry. Applications of these techniques in-
clude analysis of neural population recordings and multi-
modal sensor fusion. We discuss in detail the simple exam-
ple of three jointly defined binary random variables.

1. INTRODUCTION

Quantifying the statistical dependencies among jointly dis-
tributed random variables has never been simple. The most
commonly used dependence measure, the correlation coef-
ficient, only measures linear dependence between random
variables, and applies only to pairs of variables. However,
many applications involve large groups of variables that
have very complicated relationships not captured by cor-
relation. For example, neuroscientists are currently able
to make recordings of tens to hundreds of neurons simul-
taneously, and it is known that these ensembles exhibit
time-varying dependencies that may contribute to stimu-
lus encoding [1]. Consequently, data-efficient dependence
assessment techniques that can be applied to such high-
dimensional random vectors are vital to understanding neu-
ral population codes. Another application involving compli-
cated dependencies is multi-modal sensor fusion. In [2, 3]
the authors describe methods to fuse audio and video data
in order to locate the source of a sound. In fusing data from
a large number of sources, traditional approaches usually
resort to simplifying assumptions in order to facilitate an
analytic solution; consequently they are applicable only to

a narrow class of problems that fall within the modelling
assumptions. Model-free statistical techniques are needed
that are applicable to broader classes of problems.

Even simple examples show that, in general, groups of
random variables can express more than just pairwise de-
pendence. For example, consider N binary random vari-
ables. Fully specifying their joint distribution requires
2N − 1 parameters; there are N(N − 1)/2 pairwise cor-
relations, which, together with the N marginal probabili-
ties, can only specify the joint distribution when N = 2.
For larger groups, third and higher order dependencies also
need to be determined. The challenge is to quantify these
dependencies in a coherent, meaningful way.

We discuss here two dependencemeasures with stronger
properties than correlation. We show how these measures
can be decomposed such that each component quantifies the
contribution of dependencies of each order separately, pro-
viding further detail about the intricacies of the interactions
between random variables. In the neural population analysis
example, decomposing the dependence measures could pro-
vide a level of detail about the interactions between neurons
that was unavailable using conventional techniques. In the
audio-visual example, the dependence measure decompo-
sitions could be used to identify complex relationships be-
tween the audio and video sources that would not be found
using other techniques.

2. PHI-SQUARED DEPENDENCE MEASURE

Pearson’s φ2 is a measure of the distance between a bivari-
ate distribution and its independent counterpart, the product
of the marginals[4]. To generalize this measure for multi-
ple variables, let X = (X1, . . . , XN) be a random vector
with Xn ∈ X , with joint probability distribution pX(x) and
marginal distributions {pXn(xn)}, n = 1, . . . , N . We de-
fine

φ2 =
∫
x∈XN

p2
X(x)∏N

n=1 pXn(xn)
dx − 1 (1)

φ2 equals zero if and only if the random variables are sta-
tistically independent, and increases without bound (in gen-
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eral) with increasing dependence. For example, for a bi-
variate Gaussian distribution with correlation coefficient ρ,
φ2 = ρ2/(1 − ρ2).

2.1. Expansion of φ2

In [5, 6] it was shown that for bivariate distributions, when
φ2 < ∞, φ2 can be expanded in terms of the coefficients of
an orthonormal expansion of the bivariate distribution. In
general, when φ2 is bounded,

pX(x) =
N∏

n=1

pXn(xn)·
⎡
⎣1 +

∑
i1,··· ,iN

ai1···iN

N∏
n=1

ψin(xn)

⎤
⎦

(2)
The functions {ψin(xn), in = 0, . . .} form an orthonor-
mal basis with respect to a weighting function equal to the
marginal probability function pXn(xn). These basis func-
tions are chosen so that ψ0(xn) = 1. Then,

φ2 =
∑

i1,··· iN

a2
i1···iN

(3)

2.2. Dependence ordering in φ2

In the above expansion of a multivariate dis-
tribution function, we say that a the function
f(x1, . . . , xN ) =

∏N
n=1 ψin(xn) is of order k, 2 ≤ k ≤ N ,

if the variables Xn can be re-indexed such that
f(x1, . . . , xN ) = g(x1, . . . , xk). In other words, there
are exactly k non-constant factors in f [7]. If we let
I = {i1, . . . , iN} be the set of all indices in the expan-
sion of φ2, I can be partitioned into logical components
β = {βk}, k = 2, . . . , N , where each βk is the set of
indices (i1, . . . , iN) ∈ I for which the function f in the
expansion is of order k. Then,

φ2 =
N∑

k=2

⎛
⎝ ∑

(i1,...,iN )∈βk

a2
i1···iN

⎞
⎠ ≡

N∑
k=2

φ2
k (4)

Thus φ2 is decomposed into N −1 components, where each
component is the contribution of interactions of a different
order within the ensemble of random variables.

2.3. Example: three binary random variables

Consider the simple example of three binary random vari-
ables X1, X2 and X3, with pn = P [Xn = 1] and
σn =

√
pn(1 − pn), n = 1, 2, 3. Using the orthogonal

polynomials as a basis set for the marginal probability dis-
tributions, we have for each Xn

ψ0(xn) = 1 ψ1(xn) = (xn − pn)/σn
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Fig. 1. Decomposition of dependence measures for three
jointly distributed binary random variables. The joint dis-
tribution p(x1, x2, x3) was simulated in each bin. The top
plot shows the marginal distributions P [Xn = 1] for each
variable; the marginal distributions are constant throughout
the simulation. The middle plot shows the components of
the φ2 dependence measure, computed as described in sec-
tion 2.3. The bottom plot shows the components of the de-
pendence measure ν, computed as described in section 3.3.
Between bin 25 and bin 75, there is a constant level of 2nd

order dependence. Between bin 50 and bin 100 there is a
constant level of 3rd order dependence.

Now the coefficients ai1i2i3 in the expansion of the joint
distribution function are easy to compute:

a12 = ρ12

a13 = ρ13

a23 = ρ23

a123 = ρ123 − p1

σ1
ρ23 − p2

σ2
ρ13 − p3

σ3
ρ12

Here, ρij = (IE[xixj ] − pipj)/σiσj and
ρijk= (IE[xixjxk] − pipjpk)/σiσjσk. Finally, we
can compute the components of φ2 = φ2

2 + φ2
3:

φ2
2 = a2

12 + a2
13 + a2

23

φ2
3 = a2

123

Figure 1 illustrates this decomposition for some simulated
distributions.

3. KL DEPENDENCE MEASURE

Another useful measure to quantify the statistical depen-
dencies between multiple random variables is the Kullback-
Leibler (KL) distance between the joint probability func-
tion and its independent counterpart, the product of the
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marginals. Again, we let X = (X1, . . . , XN) be a ran-
dom vector with Xn ∈ X , with joint probability dis-
tribution pX(x) and marginal distributions {pXn(xn)},
n = 1, . . . , N . We define

ν = D(p||pind) =
∫

pX(x) log
pX(x)∏N

n=1 pXn(xn)
dx (5)

ν equals zero if and only if the random variables are sta-
tistically independent, and increases without bound (in gen-
eral) with increasing dependence. For example, for a bi-
variate Gaussian distribution with correlation coefficient ρ,
ν = − 1

2 log (1 − ρ2).
Using information geometry, we can decompose ν in a

similar way to φ2. The decomposition described here is due
to Amari[8].

3.1. Decomposition of KL dependence

Consider a family of parametric joint probability distribu-
tions M = {p(x; ξ)}, where ξ = (ξ1, . . . , ξm) is a vec-
tor of real-valued parameters that fully specify the distri-
bution of the random vector X. In information geometry,
this family of distributions is viewed as an m-dimensional
manifold with ξ as its coordinate system. For example, the
joint distribution of N binary random variables is specified
by 2N − 1 parameters, and thus lies on an m = 2N − 1
dimensional manifold.

In [8], manifolds with two different properties are dis-
cussed: e-flat manifolds and m-flat manifolds. An example
of an e-flat manifold is the exponential family

log p(x; θ) =
∑

i

θigi(x) − ψ(θ) (6)

where the {gi} are model-specific functions and ψ(θ) is a
normalizing function so that p sums to 1. This family en-
compasses a broad class of distributions, including the dis-
crete probability mass functions. An example of an m-flat
manifold is the mixture family

p(x; η) =
∑

i

ηiqi(x) (7)

where the {qi} are probability density functions, 0 < ηi <
1, and

∑
ηi = 1. While it is not true in general that dis-

tributions in the exponential family are also in the mixture
family, it is true that manifolds that are e-flat are also m-flat
(and vice-versa). Consequently, it can be shown that for a
distribution belonging to either family, the KL dependence
measure can be decomposed as ν =

∑N
k=2 νk, where νk is

the component due only to k th-order interactions between
the random variables.

3.2. Dependence ordering in ν

We begin by partitioning the parameters such that each par-
tition contains only parameters that describe the same de-
pendence order. Let X = (X1, . . . , XN ) be a random vec-
tor with Xn ∈ X and joint probability distribution pX(x).
If p lies on an e-flat manifold E = {p(x; θ)} with coordi-
nates θ, the manifold is also m-flat and can be written as
M = {p(x; η)} with coordinates η. We rewrite the coor-
dinates in terms of the ordered partitions θ = (θ 1, . . . ,θN )
and η = (η1, . . . ,ηN ), where θk and ηk are the set of all
parameters that describe only the interactions of order k.
Using this partition, we define the submanifolds

Ek = {p(x; θ) : θk+1 = 0, . . . ,θN = 0}
Mk = {p(x; η) : ηk+1 = 0, . . . ,ηN = 0} (8)

Thus the submanifolds Ek and Mk contain only probability
distributions that have no dependencies higher than order k.
It can be shown that the two submanifolds are complemen-
tary and orthogonal at every point, and consequently using
the Pythagoras theorem we obtain the decomposition

ν = D(p||p(1)) =
N∑

k=2

D
(
p(k)||p(k−1)

)
≡

N∑
k=2

νk (9)

where p(k) is the projection of p along the coordinates η to
the closest point on the submanifold Ek. Note that this is not
equivalent to simply setting θk+1 = · · · = θN = 0 in the
exponential model to obtain a new distribution; rather, to
satisfy the orthogonality condition we require a coordinate
transformation to obtain a new set of (ηk+1, . . . ,ηN ) coor-
dinates for the projection. Thus ν is decomposed into N −1
components, where each component is the contribution of
interactions of a different order to the overall dependence
between the random variables.

3.3. Example: three binary random variables

Consider the example from the previous section. We obtain
the parameterization

log p(x, θ) =
∑

i

θixi +
∑
i<j

θijxixj + θ123x1x2x3 − ψ

which has the coordinates θ = (θ1, θ2, θ3), where
θ1 = (θ1, θ2, θ3), θ2 = (θ12, θ13, θ23), and θ3 = (θ123).
Similarly, we define an η parameterization such that
we obtain the coordinates η = (η1, η2, η3), where
η1 = (η1, η2, η3), η2 = (η12, η13, η23), and η3 = (η123).
Here, ηi = IE[xi], ηij = IE[xixj ], and η123 = IE[x1x2x3].
We wish to obtain the projection p(2), which is found by
setting θ3 = 0 and solving for the new coordinate η 3.

To find the transformation between θ and η, we first let
px1x2x3 = P [X1 = x1, X2 = x2, X3 = x3]. Rewriting θ
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in terms of these probabilities, we find that

θ123 = log
p111p100p010p001

p000p110p101p011
(10)

Since η consists of expected values, we can also write η in
terms of the probabilities

η = Ap (11)

where A is a (2N − 1) × (2N − 1) invertible matrix and
p = (px1x2x3)x∈X , x �=(0,0,0) is the vector of probabilities
excluding p000. Hence, to find p(2), we set equation (10)
equal to zero and solve for the new η̃123. Then we sim-
ply substitute η̃123 back into equation (11) and solve for p.
Finally, we note that p(1) is simply the independent distri-
bution, the product of the marginals. Thus we obtain the
components of ν = ν2 + ν3,

ν2 = D(p(2)||p(1))
ν3 = D(p||p(2))

Figure 1 illustrates this decomposition for some simulated
distributions. The simulations show that the results of the
two decompositions are similar.

4. CONCLUSION

We have described two multivariate statistical dependence
measures that can be used to quantify dependencies be-
tween large groups of random variables. Both measures can
be decomposed orthogonally into different orders of depen-
dence, providing a greater level of detail about the depen-
dencies. In each case, the decomposition applies to proba-
bility functions that meet certain conditions: (1) φ2 and ν
must be bounded; more stringent constraints on the distri-
butions are evident in each case, but both decompositions
are valid in general for discrete distributions. (2) For dis-
crete distributions, both decompositions are valid only if
P [X = x] > 0 ∀x. In practice, this is ensured by using
the Krichevsky-Trofimov [9] method to estimate the proba-
bility distributions.

Although both measures provide a strong expression of
dependence, practical considerations dictate which measure
should be used for a given application. For example, for
large groups of random variables, decomposing ν requires
solving large systems of non-linear equations, and hence
may be too computationally intensive to be of practical use.
φ2 is decomposed by computing sets of orthonormal func-
tions on the marginal densities, which can be accomplished
much more efficiently. It is important, however, to also con-
sider the statistical properties of the two measures; this con-
sideration is especially important in applications like neu-
ral population analysis that are severely data-limited. Em-
pirical methods such as the bootstrap can be used to re-

move bias and estimate confidence intervals for both mea-
sures; however, we still require the complementary theoreti-
cal work to determine how much data are needed to achieve
a specified confidence level for each measure.
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