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Aleksandar Dogandžić and Benhong Zhang

ECpE Department, Iowa State University
3119 Coover Hall, Ames, IA 50011

email: �ald,zhangbh�@iastate.edu

ABSTRACT

We present methods for dynamic estimation and prediction
of local mean (shadow) powers from instantaneous signal
powers in composite fading-shadowing wireless communi-
cation scenarios. We adopt a Nakagami-� fading model
for the instantaneous signal powers and a first-order au-
toregressive [AR(1)] model for the shadow process in deci-
bels. Sequential Bayesian analysis is applied to estimate the
shadow powers assuming that the Nakagami-� and AR(1)
model parameters are known. We also develop a method
for jointly estimating both the shadow powers and unknown
model parameters. Numerical simulations demonstrate the
performance of the proposed methods.

1. INTRODUCTION

In wireless communications, the ability to accurately esti-
mate local mean (shadow) powers is instrumental for adap-
tive modulation techniques, handoff, channel access, and
power control, see e.g. [1]–[3] and references therein. In
this paper, we derive sequential Bayesian algorithms for
estimating and predicting the shadow powers in compos-
ite fading-shadowing channels1 with a Nakagami-� fading
component and a shadowing component that follows a first-
order autoregressive [AR(1)] random process.

The measurement model and dynamic estimation algo-
rithm for known model parameters are presented in Section
2. The joint estimation of shadow powers and model param-
eters is discussed in Section 3. In Section 4, we evaluate the
proposed methods using numerical simulations.

2. MEASUREMENT MODEL AND PROPOSED
DYNAMIC ESTIMATOR OF SHADOW POWERS

We model the instantaneous signal powers ��� � � �� �� � � �
received at the mobile station as conditionally independent

1Composite fading-shadowing models are used to describe the statisti-
cal properties of wireless communication channels in congested downtown
areas [3]–[6], satellite communication systems [7], and distributed antenna
systems [8].

gamma random variables with the following probability den-
sity functions (pdfs):
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(2.1)
where ���� denotes the gamma function, � the Nakagami-
� fading parameter, and ��� � � �� �� � � � the local mean
(shadow) powers in decibels. We assume that the shadow
powers �� follow a first-order autoregressive [AR(1)] ran-
dom process satisfying the following recursion:

�� � ������ � ��� (2.2)

where �� are independent zero-mean random variables with
variances 	����. The AR(1) model in (2.2) is widely used
to describe the correlation of the shadow process ��, see
e.g. [2], [9], [10], and references therein. Our goal is to
estimate the unknown shadow powers �� assuming that the
model parameters (Nakagami-� fading parameter, AR co-
efficients ��, and variances 	�

���) are known. (An extension
to the scenario where the model parameters are unknown is
considered in Section 3.) Estimates of the shadow powers
in decibels are being utilized by most handoff algorithms,
as well as for channel access and power control, see [2].

Note that we have not specified the distributional form
of the random variables �� apart from their first two mo-
ments; hence the distribution of �� is also not fully spec-
ified. Denote the mean and variance of �� by 
� and ��.
Immediately before we observe ��, all currently available
information is described by the mean 
��� and variance
���� of the shadow process. At time � � �, these are
the starting values 
� and ��, and for all other � will come
from the posterior distribution of ���� given ����, denoted
by ����������
. Using the AR(1) model in (2.2), we com-
pute the mean �� and variance 
� of the prior distribution
����
���� ����
:

�� � �� 
���� (2.3a)


� � ��

� ���� � 	����� (2.3b)

Since ����
���� ����
 is specified only through the above
moments, we are free to choose the form of this distribution
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as long as it is consistent with (2.3), see also the discussion
in [11, p. 526]. Here, we adopt the Gaussian prior pdf with
mean and variance given in (2.3):
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(2.4)
Another convenient choice for the prior distribution is the
conjugate prior on the natural parameter of the observation-
model distribution in (2.1), which leads to the dynamic gen-
eralized linear model in e.g. [11, Ch. 14.3]. Aside from the
different choice of the prior distribution, our model in (2.2)–
(2.3) can be viewed as a special case of the dynamic model
in [11, eqs. (14.11) and (14.21)–(14.22)].

Using the Gaussian prior (2.4), the posterior updating
equations (2.5) at the bottom of the page are derived by
computing the mean and variance of ����	��. The approx-
imate expressions (2.5b) and (2.6b) follow by applying the
change-of-variable transformation 
 � ��� � ����

�
��� to

the numerators and denominators in (2.5a) and (2.6a) and
using Gauss-Hermite quadrature to numerically evaluate the
obtained integrals. Here, � is the quadrature order (deter-
mining approximation accuracy), 
 �� 
 � �� � � � � � are the
zeroes of the �th-order Hermite polynomial and ��� � 
 �
�� � � � � � are the Gauss-Hermite quadrature weight factors
tabulated in e.g. [12]. The expressions (2.5b) and (2.6b)
are remarkably simple due to the cancellations of the com-
mon terms in the numerators and denominators of (2.5a) and
(2.6a).

To summarize, we propose a sequential Bayesian method
for the dynamic estimation and prediction of shadow pow-
ers using the prior cascade equations (2.3) and posterior up-
dating equations (2.5). Assuming that instantaneous signal
powers until time � are available, the proposed estimator
of the shadow power �� is simply �� [computed in (2.5b)]
and the corresponding one-step predictor of ���� is [see
(2.3a)]:

���� � ������� (2.7)
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where ������ ��� � ���
�
������������� and

� ���
�
��� �	�
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(2.6a)
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3. JOINT ESTIMATION OF SHADOW POWERS
AND MODEL PARAMETERS

We develop an iterative method for jointly estimating the
shadow powers and model parameters. (The joint estima-
tion of the shadow powers and model parameters is im-
portant in urban environments if the sampling period with
which the measurements are collected is relatively large, see
[2, Sect. IV].) First, assume that the AR coefficients �� and
variances ��
�� are constant (independent of �) in the inter-
val ��� �� � � � ���, i.e.

�� � � (3.1a)

��
�� � ��
 � � � �� �� � � � ��� (3.1b)

implying stationarity of the shadow process. We propose
the following alternating-projection algorithm for estimat-
ing the shadow powers and unknown model parameters in
(3.1) using the instantaneous powers 	�� 	�� � � � � 	� : iterate
between

Step 1: fix� and ��
 and estimate ��� ��� � � � � �� using (2.5b)
[where the full recursion is described by (2.3) and
(2.5)] and

Step 2: fix ��� ��� � � � � �� and estimate� and ��
 using their
asymptotic maximum likelihood (ML) estimates (see
e.g. [14, Ex. 7.18]):

�� �

����
��� ��������

��� �
�
�

� (3.2a)

���
 �
�

�

� ��
���

���

�
� ��� ����� (3.2b)

Note that Step 1 requires knowledge of the Nakagami-�
fading parameter, which can be estimated separately. In the
following, we briefly discuss the estimation of �.
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Fig. 1. Mean-square errors for the sequential Bayesian and
Kalman-filter based estimators and predictors of the shadow
powers as functions of �, assuming known model parame-
ters and � � � (Rayleigh fading).

Estimating the Nakagami-� parameter: The Nakagami-
� fading parameter can be estimated using the algorithms
proposed in [13], where we derived ML methods for es-
timating � from the instantaneous powers ��� ��� � � � � ��
[which follow (2.1)] under the piecewise-constant model for
shadow powers. In particular, ��� ��� � � � � �� were assumed
to be constant within intervals (windows) of length � but
allowed to vary randomly from one interval to another. In
[13], we chose � � �� and ��������� � ��������� �
����������� � ��, where ��� 	 � �� �� � � � � � were mod-
eled as independent, identically distributed Gaussian ran-
dom variables with unknown mean and variance.
Backward recursion: In addition to the “forward” recur-
sion described in Step 1, we can also estimate the shadow
powers by applying (2.3) and (2.5) “backward” to the ob-
servations arranged in the reverse order: �� � ����� � � � � ��,
which follows from the stationarity of the shadow process,
see (3.1). The shadow-power estimation in Section 2 and
Step 1 (above) can be improved by running both forward
and backward recursions and averaging the obtained for-
ward and backward estimates of ��� ��� � � � � �� . Note, how-
ever, that forward-backwardaveraging requires non-dynamic
(batch) processing of the instantaneous powers.

4. NUMERICAL EXAMPLES

The numerical examples presented here assess the estima-
tion accuracy of the proposed methods. The instantaneous
powers ��� 
 � �� �� � � � were simulated from a gamma-
lognormal fading channel model (see e.g. [3] and [4]) with
correlated shadow powers, described by (2.1) and (2.2) with
��� 
 � �� �� � � � generated from a Gaussian distribution.
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Fig. 2. Mean-square errors for the sequential Bayesian and
Kalman-filter based estimators and predictors of the shadow
powers as functions of �, assuming known model parame-
ters and � � �.

[Consequently, the shadow powers ��� 
 � �� �� � � � are also
Gaussian.] We assume that the AR coefficients �� and vari-
ances 
���� are constant, equal to �� � � � ������ and

���� � 
�� � ������, which are typical values in an urban
environment, see [2]. Our performance metric is the mean-
square error (MSE), calculated using 500 independent trials.
The quadrature order of the Gauss-Hermite approximations
in (2.5b) and (2.6b) was � � ��.

In the first set of simulations, we consider a scenario
with knownmodel parameters and apply the dynamic shadow
power estimation and prediction algorithm in Section 2. The
recursion in (2.3) and (2.5) was initialized using �� � � and
�� � 
���	�� ��
. In Figs. 1 and 2, we show the MSEs of
the sequential Bayesian estimator (2.5b) and one-step pre-
dictor (2.7) for � � � (Rayleigh fading) and � � �, re-
spectively, as functions of the number of samples �. Figs.
1 and 2 also show the MSE performances of the Kalman-
filter based power estimators and predictors recently pro-
posed in [2]. The sequential Bayesian method outperforms
the Kalman filter in both scenarios2.

In the second set of simulations, we consider the sce-
nario where the model parameters are unknown (in addi-
tion to the shadow powers) and apply the iterative algorithm
in Section 3 for jointly estimating the shadow powers and
model parameters. To improve the shadow power estima-
tion in Step 1 of the iteration, we averaged the forward and
backward estimates of the shadow powers, as described in
Section 3. In Figs. 3 and 4, we show the MSEs of the model-
parameter and shadow-power estimates (respectively) for

2Note that the Kalman filtering method in [2] was designed for the
Rayleigh-fading scenario only.
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Fig. 3. Mean-square errors for the estimators of the model
parameters (�, �, and ��

�
, respectively) as functions of �,

obtained for� � � and� � � using the iterative algorithm
in Section 3.
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Fig. 4. Mean-square errors for the forward-backward esti-
mators of the shadow powers as functions of �, obtained
for � � � and � � � using the iterative algorithm in Sec-
tion 3.

� � � and � � �, obtained using the method in Section
3. We selected � � � to be the window length for estimat-
ing �. Interestingly, for large � and � � �, the forward-
backward shadow-power estimates for unknown model pa-
rameters outperform the dynamic shadow-power estimates
for known model parameters, see Figs. 4 and 2.
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