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ABSTRACT

A blind deconvolution algorithm is presented to address the
problem of the dereverberation of speech. A Bayesian algo-
rithm is developed for estimating the source, and the prob-
lem of ill-conditioning due to long tails of an acoustic im-
pulse response (AIR) is avoided by marginalizing out the
unknown channel parameters. The initial samples of the
MAP estimate are determined using a stochastic MCMC
technique, and these estimates are then used in a sequen-
tial procedure for estimating the remaining of the signal.
A filterbank implementation is used to reduce the large de-
convolution problem into several smaller independent prob-
lems. Simulation results are presented to demonstrate the
performance of the algorithm applied to the dereverberation
of speech.

1. INTRODUCTION

Blind deconvolution is a specific problem in the field of
blind signal processing. Blind techniques attempt to deter-
mine either the unknown input signals or unknown channels
from the observed signals [1],[4],[6]. Blind deconvolution
deals with recovering a single input signal from multiple
output signals, known as a SIMO system.

Reverberation of speech can cause significant percep-
tual impairment to the quality of speech received at a micro-
phone (i.e. in a hearing aid or hands-free telephone). Previ-
ous research in this application is presented in [3]. Typical
AIR can be in the order of 250ms, or 2000 samples at a sam-
pling rate of 8kHz. The large computational cost of deal-
ing with such a long channel is addressed in this algorithm
by decomposing the problem into smaller independent blind
deconvolution problems using a filterbank structure.

Another property of the AIR is that the coefficients de-
cay smoothly towards zero (“tailed”), making the blind chan-
nel identification problem ill-conditioned. The approach
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taken here is to directly estimate the source itself using a
Bayesian MAP algorithm that marginalizes out the unknown
channel parameters. This approach offers a more computa-
tionally stable method for recovery of the source signal.

2. BAYESIAN ESTIMATION FORMULATION

2.1. Problem Model and Assumptions

The model for the jth output of a single input, J-sensor
output system is

yj [n] = s[n] ∗ hj + vj [n] (1)

For a block of Q discrete observation samples, the SIMO
system written in matrix format is

y[n] = T(s[n]) · h + v[n] (2)

The following data structures and statistical assumptions are
used in the Bayesian algorithm

• y[n] = [yT
1 [n], . . . ,yT

J [n]]T is the sensor observation
vector, and yj [n] = [yj [n − Q + 1], . . . , yj [n]]T ∈
R

Q, j = 1, 2, ..., J

• v[n] ∈ R
JQ is the noise vector, structured analo-

gous to y[n], with vj [n] i.i.d. Gaussian: p(v[n]) ∼
N (0, σ2

vIJQ)

• s[n] = [s[n−Q−L + 2], . . . , s[n]]T ∈ R
(Q+L−1) is

the source vector with s[n] i.i.d. Gaussian: p(s[n]) ∼
N (0, σ2

sIQ+L−1). For a speech source, the simplifi-
cation of using a Gaussian model allows for analytical
tractability, at the expense of a degradation in perfor-
mance.

• h = [hT
1 , . . . ,hT

J ]T is the FIR channel impulse re-
sponse vector, and hj = [hj [1], . . . , hj [L]]T], with
h Gaussian distributed: p(h) ∼ N (0,Σh) where
Σh = IJ⊗diag([σ2

h[1], . . . , σ
2
h[L]]), and the variances

σ2
h[n] decay smoothly towards zero. IJ denotes the

J × J identity matrix, and ⊗ the Kronecker product.
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• T(s[n]) ∈ R
(JQ×JL) is constructed to convolve s[n]

with the J FIR channel vectors hj of length L.

• It is assumed the channel length L is known, and that
the channel does not change significantly over the
observed samples (“quasi-static”). All the variances
(σ2

s , σ2
v ,Σh) are assumed known.

2.2. Development of the Posterior Distribution

Using Bayes theorem, the posterior distribution function for
the independent unknown parameters s[n] and h can be ex-
panded within a normalizing constant as

p(s[n],h|y[n]) ∝ p(y[n]|s[n],h)p(s[n])p(h) (3)

In addition to the Gaussian prior distributions p(s[n]) and
p(h) given above, the likelihood function is Gaussian dis-
tributed: p(y[n]|s[n],h) ∼ N (T(s[n]) · h, σ2

vIJQ) as seen
from (2). Our primary goal is to recover an estimate of the
unknown source s[n], and therefore h can be treated as a
nuisance parameter. The channel impulse response h can
be marginalized out of the posterior distribution resulting in
a function of only the source

p(s|y) ∝ |Σ|1/2

(2πσ2
v)

JQ
2 |Σh|1/2

× exp
[
1
2
(mT

hΣ−1mh − 1
σ2

v

yTy)
]

× 1

(2πσ2
s)

(L+Q−1)
2

exp
[
− 1

2σ2
s

sTs
]

(4)

where

Σ−1 =
1
σ2

v

TTT + Σ−1
h (5)

mh =
1
σ2

v

ΣTTy (6)

and explicit dependence on time is ignored for simplicity.

3. OPTIMIZATION ALGORITHM FOR MAP
ESTIMATION

To find the Maximum a Posterior (MAP) estimate of the
source signal, the marginalized posterior distribution is max-
imized in terms of s in two stages: the initialization stage
and the sequential stage.

3.1. Initialization Stage

The first stage computes estimates ŝ[1], ŝ[2], . . . , ŝ[Qinit]
of the initial Qinit samples of the source. The algorithm
assumes data has been collected from the start of the con-
volution of s[n] and h, meaning s[n − L + 1], s[n − L],

. . . , s[n − 1] all equal zero for n = 1. To find the ini-
tial estimates, the non-convex Qinit-dimensional posterior
distribution in (4) is maximized using a stochastic Markov
Chain Monte Carlo (MCMC) approach [2]. A Metropolis-
Hastings (MH) technique is selected using a proposal distri-
bution

d(s∗) =
1

(2πσ2
s)

(Linit+Qinit−1)
2

exp
[
− 1

2σ2
s

s∗Ts∗
]

(7)

for a candidate s∗, assumed to be independent of the current
state of the chain s(i) at the ith iteration.

A MAP estimate of the initial source samples can then
be obtained from the samples of the Markov Chain which,
after a sufficient burn-in period, are distributed according to
the desired posterior distribution. For the simulations, the
average over a block of N MCMC samples after Nb burn-in
samples is used for the estimate of each source sample

ŝ[n] =
1
N

Nb+N∑
i=Nb+1

s(i), n = 1, 2, . . . , Qinit (8)

It is important to note that it is not required that Qinit ≥
L since the first Qinit output samples only depend on the
first Linit = Qinit channel coefficients.

3.2. Sequential Stage

The sequential stage computes an estimate ŝ[n + 1] based
on the estimates ŝ[1], . . . , ŝ[n] available at that time. The
maximization of the marginalized posterior distribution is
reduced to a one-dimensional problem, which can be eas-
ily optimized, by substituting previous estimates for past
values. For example, given initial estimates ŝ[1], ŝ[2], the
structure for estimating s[3] for a J = 2 output system is

y[3] = I2 ⊗
⎛
⎝ŝ[1] 0 0

ŝ[2] ŝ[1] 0
s[3] ŝ[2] ŝ[1]

⎞
⎠h + v[3] (9)

where now the only unknown is s[3].
Two restrictions apply to the number of observations

Qseq used for the sequential procedure. First, clearly Qrec ≤
n+1 since the first sample is available at n = 1. The second
condition is that to account for all the channel coefficients,
Qsec ≥ L. In the case where Qinit < L, applying the two
conditions requires that for n + 1 = Qinit + 1, . . . , L, the
value of Qsec = n + 1 since the observations only depend
on the first n + 1 channel coefficients.

4. COMPLEX SUBBANDING IMPLEMENTATION

For large L, the computational cost of the MAP estimation
algorithm can become intractable. A filterbank implemen-
tation using the complex subband decomposition [5] is used
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Fig. 1. (a) An arbitrary LTI system S(z). (b) A subband
approximation of the system S(z).

to break the large blind deconvolution problem into smaller
independent problems to reduce the algorithm complexity.

The complex subband decomposition describes how to
decompose an arbitrary FIR system S(z) of order L into M
subband components of order O(L/K), where K is the down-
sampling/upsampling rate, using an M-channel filterbank as
illustrated in Figure 1.

It is shown in [5] that the time domain versions uyj ,m[n]
of Um(z

1
K ) in Figure 1(b), representing the signal yj [n] in

the mth subband can be written in the form

uyj ,m � fm[n]↓K ∗ cs,m[n] ∗ chj ,m[n]
+fm[n]↓K ∗ cvj ,m[n] (10)

where fm[n]↓K is the downsampled impulse response of the
mth analysis filter, cs,m[n] and chj ,m[n] represent the sig-
nals s[n] and hj [n] respectively in the mth subband, and
cvj ,m[n] is the component of the noise in the mth subband.

Except for the presence of the fm[n]↓K terms, equa-
tion (10) looks like a convolution inside the subbands of the
respective signals s[n] and hj [n]. The Bayesian blind de-
convolution method described in this paper can therefore be
applied to the signals uyj ,m[n], j = 1, 2, . . . , J in the sub-
bands to yield estimates of the signals fm[n]↓K ∗ cs,m[n].
These signals are then upsampled and passed through the
synthesis filters as shown in Figure 1 to yield the recovered
source signal ŝ[n] at the filterbank output. The advantage
of this approach is that the effective length of the channel is
reduced by a factor of approximately K. The disadvantage
is that the recovered signal in each subband is subjected to
an unknown complex scale ambiguity.

5. SIMULATION RESULTS

Simulation results are now presented to support the devel-
oped algorithm for a J = 2 output system. 4000 samples
of real speech sampled at 8 kHz normalized to σ2

s = 1 was
used as the source. Two FIR channels with L = 45 and
W = 0.15 were generated using the exponentially decay-
ing channel covariance matrix

Σh = I2 ⊗ diag(e−
0

W L , . . . , e−
L−1
W L ) (11)

The white noise was scaled to an SNR of 30dB, defined as

SNR(dB) = 10 log10

(‖T(s[n]) · h‖2
2

σ2
v

)
(12)

A 32-channel oversampled generalized discrete Fourier trans-
form (GDFT) filterbank was used with a downsampling rate
of K = 20. The complex analysis/synthesis filters using
Lf = 256 filter coefficients were designed following the
spectral factorization method specified in [5].

The first Qinit = 2 samples in each subband were es-
timated by running the MCMC MH algorithm for 20000
burn-in samples, and then averaging the following 10000
MCMC samples to form the estimates ûs,m[1] and ûs,m[2].
For the given parameters, the length of the subband chan-
nel is Lch

= 3. Therefore, the sequential procedure is first
applied once using Qseq = Lch

= 3 to produce ûs,m[3].
Subband 5 is arbitrarily selected to demonstrate the perfor-
mance of the estimation of the initial samples in Figure 2.
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Fig. 2. Estimation of us,5[1] ∼ us,5[3]

Now that Lch
estimates have been computed, the se-

quential optimization procedure continues with Qsec = Lch
+

1 = 4 to estimate the remaining part of the subband signal.
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Fig. 3. Estimation of us,2[1] ∼ us,2[100].

Samples n = 1 to n = 100 of the signals in subband 2 are
shown in Figure 3.

The synthesized speech estimate from n = 1000 to
n = 1200 is compared with the true speech signal in Figure
4. The mean square error (MSE) was -14.22 dB, computed
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Fig. 4. Synthesized estimate of s[1000] ∼ s[1200]

over the entire signal estimate using

MSE(dB) = 10 log10

(‖s[n] − ŝ[n]‖2
2

‖s[n]‖2
2

)
(13)

In order to evaluate the above MSE, it is necessary to
resolve the inherent scale ambiguity in the subband signals.
Based on a least squares formulation, the unknown complex
scale factors am are estimated as follows

am =
ûH

s,mus,m

ûH
s,mûs,m

(14)

The signal ûs,m in each subband is then multiplied by am,
before upsampling and synthesis filtering. The filterbank
output ŝ[n] is then substituted into (13) for evaluation of the
MSE.

6. CONCLUSIONS

A Bayesian approach to blind signal recovery has been pre-
sented. Unlike previous approaches which first estimate the
channel and then form an inverse (processes which can be
ill-conditioned in this application), the proposed approach
treats the channel as a nuisance parameter and estimates the
source directly. An efficient time-recursive procedure for
the estimation of the source was proposed. Simulation re-
sults have shown the effectiveness of the method.
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