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ABSTRACT
Recently lifting-based integer transforms have received much at-
tention, especially in the area of lossless audio and image cod-
ing. The usual approach is to apply the lifting scheme to each
Givens rotation. Especially in the case of long transform sizes in
audio coding applications, this leads to a considerable approxima-
tion error in the frequency domain. This paper presents a multi-
dimensional lifting approach for reducing this approximation er-
ror. In this approach, large parts of the transform are calculated
without rounding operations, only the output is rounded and added.
The new approach is applied and evaluated for both the Integer
Modified Discrete Cosine Transform (IntMDCT) and the Integer
Fast Fourier Transform (IntFFT).

1. INTRODUCTION

Usually integer transforms are obtained by decomposing the trans-
form into Givens rotations and applying the lifting scheme [1] or
ladder network [2, 3] to each Givens rotation [4, 5, 6]. This in-
troduces a rounding error in each step. For succeeding stages of
Givens rotations the rounding error accumulates. The resulting
approximation error becomes a burden, especially for long trans-
forms of e.g. 1024 spectral values, as used in audio coding appli-
cations. Specifically for the high frequency range, where audio
signals usually contain a rather small amount of energy, the ap-
proximation error can be larger than the actual signal and becomes
the main limiting factor for lossless coding efficiency.

So the main design objective for improved integer transforms
is the reduction of the approximation error. Besides that, the com-
putational complexity should also be considered. The current ap-
proach of applying the lifting scheme to each Givens rotation,
including the trivial sum-difference-butterflies, considerably in-
creases the computational complexity compared to the original
non-integer version of the transform (by about a factor of 2).

Some publications focusing on lossless image coding [4], [7],
[8] propose a reduction of the resulting approximation error by a
generalized lifting decomposition. Unfortunately, this approach
cannot simply be applied to long transforms used in audio coding
because the resulting algorithm has a considerable computational
complexity (O(N2)) compared to fast, rotation-based algorithms
(O(N log N)).

The approach presented in [8] uses block matrices to recur-
sively obtain a triangular matrix decomposition. While the ap-
proach presented here is based on similar block matrices, no re-
cursion is necessary.

This paper is organized as follows: First the basic approach
for multi-dimensional lifting is presented, then this approach is

applied and evaluated both for the Integer Modified Discrete Co-
sine Transform (IntMDCT) and the Integer Fast Fourier Transform
(IntFFT).

2. FROM CLASSICAL TO MULTI-DIMENSIONAL
LIFTING

Usually the lifting scheme is applied to obtain an invertible integer
approximation of a Givens rotation:„

cos α −sin α
sin α cos α

«
=

„
1 cos α−1

sin α
0 1

«„
1 0

sin α 1

«„
1 cos α−1

sin α
0 1

«

The integer approximation is achieved by applying a rounding
function after each addition.

The lifting scheme can also be used for an invertible integer
approximation of certain scaling operations. In [9] the following
lifting decomposition of a 2 × 2 scaling matrix with determinant
value of one is presented:

„
d 0
0 d−1

«
=

„−1 0
d−1 1

«„
1 −d
0 1

«„
0 1
1 d−1

«

This decomposition provides the basic idea for the new ap-
proach. The equation still holds when all the values are replaced
by n × n matrices. Thus, for any invertible n × n matrix T and
for the n × n identity matrix In the following decomposition of
2n × 2n block matrices is possible:

„
T 0
0 T−1

«
=

„−In 0
T−1 In

«„
In −T
0 In

«„
0 In

In T−1

«
(1)

Apart from some simple operations, such as permutations or
multiplication by −1, all the three blocks of this decomposition
have the following general structure:„

In 0
A In

«

with an n × n matrix A.
To this 2n × 2n block matrix a generalized lifting scheme

can be applied, called “multi-dimensional lifting” in this paper.
Similar to the conventional lifting scheme, these 2n×2n matrices
can be used for invertible integer approximations of the transform
T in the following way: The first half of the integer input values
are processed by the matrix A and then rounded to integer values
before adding them to the second half of the values.

II - 10050-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



The inverse of the block matrix is given by„
In 0
A In

«−1

=

„
In 0
−A In

«
.

In this way, the process can be inverted without any error by simply
applying the same matrix A and the same rounding, and subtract-
ing the resulting values instead of adding them. As the first half of
the values is not modified in the forward step, they are still avail-
able for the inverse step. No special restrictions apply to the matrix
A, e.g. it does not necessarily have to be invertible.

3. INTMDCT BY MULTI-DIMENSIONAL LIFTING

To obtain an invertible integer approximation of cosine modulated
filter banks in general, they are decomposed into the windowing
stage and the DCTIV , see [9]. For the MDCT the windowing stage
becomes one stage of Givens rotations. Figure 1 illustrates this
decomposition.
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Fig. 1. Decomposition of MDCT and inverse MDCT into Givens
rotations and DCTIV

Traditionally, the DCTIV is decomposed into Givens rotations
in the same way as for fast algorithms. The number of Givens
rotations is given by O(N log N) for a transform of length N .
The windowing stage in the MDCT decomposition consists of only
N/2 Givens rotations or 3N/2 rounding steps. Consequently, for
transform lengths used in audio coding applications, e.g. 1024,
the main contribution to the approximation error results from the
integer approximation of the DCTIV block.

The new approach presented in this paper utilizes the multi-
dimensional lifting approach and in this way reduces the number of
rounding steps in the DCTIV to 3N/2, which equals the number of
rounding steps in the windowing stage (in contrast to O(N log N)
rounding steps for the conventional lifting-based approach).

3.1. The Stereo IntMDCT

The most straight-forward way of using the multi-dimensional lift-
ing approach for the IntMDCT is to apply the DCTIV to two blocks
of signals simultaneously. These blocks can either be from two
subsequent blocks or from the left and the right channel of a stereo
audio signal. The decomposition in equation (1) is applied to the
DCTIV matrix. Since the inverse of the DCTIV is again the DCTIV ,
the decomposition in equation (1) becomes:„

DCTIV 0
0 DCTIV

«
=„ −IN 0

DCTIV IN

«„
IN −DCTIV

0 IN

«„
0 IN

IN DCTIV

«
(2)

Thus, apart from permutations and multiplications with −1,
the application of the DCTIV to two blocks of signals can be per-
formed with three multi-dimensional lifting steps. This process is
illustrated in figure 2, including the rounding operations for the
integer approximation.
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Fig. 2. Invertible integer approximation of two blocks of DCTIV by
three multi-dimensional lifting steps

With this approach, two DCTIV transforms of length N can be
implemented in an invertible integer fashion with only 3N round-
ing steps, i.e. 3N/2 rounding steps per transform.

The DCTIV in the three multi-dimensional lifting steps can have
an arbitrary implementation, such as floating-point or fixed-point
based, and does not need to be invertible. It just has to be per-
formed in the same way in the forward and inverse IntMDCT. This
makes the approach also suitable for high transform sizes. The
overall computational complexity is about 1.5 times the compu-
tational complexity of the non-integer implementation of the two
DCTIV transforms. This is lower than for the conventional lifting-
based integer implementations, which are about twice as complex
as the conventional DCTIV , as these implementations have to im-
plement the trivial +/− butterflies based on lifting to achieve an
energy conservation [6].

3.2. The Mono IntMDCT

The Stereo IntMDCT approach implies the simultaneous calcu-
lation of two DCTIV transforms, e.g. by calculating the DCTIV of
two subsequent blocks or by calculating the DCTIV of the left and
the right channel simultaneously. While the first alternative intro-
duces an additional delay of one block into the system, the second
alternative is only possible for stereo signals. If neither the delay
nor the stereo processing are desired, multi-dimensional lifting is
still viable, but some additional stages of Givens rotations become
necessary.

The DCTIV of length N

DCT(N)
IV =

 r
2

N
cos

(2k + 1)(2l + 1)π

4N

!
k,l=0,...,N−1

can be decomposed into two DCTIV of length N/2 and pre- and
post-modulation stages. In the following, this decomposition is
described.
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Define the N × N matrices L and M by„
Lk,k Lk,N−1−k

LN−1−k,k LN−1−k,N−1−k

«
=„

cos( 2k+1
4N

π) − sin( 2k+1
4N

π)
− sin( 2k+1

4N
π) − cos( 2k+1

4N
π)

«
k = 0, . . . , N/2 − 1

Lk,l = 0 else

M =
1√
2

„
IN/2 IN/2

−IN/2 IN/2

«
and the N × N permutation matrices P and Q by

P4k,4k = P4k+1,4k+1 = P4k+2,4k+3 = P4k+3,4k+2 = 1

k = 0, . . . , N/4 − 1

Pk,l = 0 else

i.e. every second pair of values is swapped, and

Qk,2k = QN/2+k,2k+1 = 1 k = 0, . . . , N/2 − 1

Qk,l = 0 else

i.e. the values with even indices are arranged first, and the values
with odd indices are arranged subsequently.

With these matrices, the DCTIV of length N can be decom-
posed into

DCT(N)
IV = L

 
DCT(N/2)

IV 0

0 DCT(N/2)
IV

!
MQP

Then the two DCTIV of length N/2 can be decomposed into
three multi-dimensional lifting steps of length N/2 using equa-
tion (2). The matrices L and M can both be considered as N/2
Givens rotations. The matrix M can be implemented using the
multi-dimensional lifting steps„

IN/2 0
− 1

2
IN/2 IN/2

«„
IN/2 IN/2

0 IN/2

«

The necessary scaling factors
√

2 and 1/
√

2 can be handled by
the DCTIV stage. The lifting implementation of the matrices L
and M can be combined with the DCTIV stage to further reduce
the overall number of rounding operations. This is done by merg-
ing the remaining N/2 rounding operations for M , and N/2 of
the 3N/2 rounding operations for L with the rounding operations
in the DCTIV stage [10]. So, overall only 5N/2 rounding opera-
tions are necessary for this invertible integer approximation of the
DCTIV of length N .

Including the windowing stage, the total number of rounding
operations for this IntMDCT is 4N , i.e. 4 rounding operations per
sample.

4. INTFFT BY MULTI-DIMENSIONAL LIFTING

The IntFFT [5] is an invertible integer approximation of the FFT. It
can also be used to construct the Mono IntMDCT since a DCTIV of
length N can be further decomposed into a DFT of length N/2
with pre and post processing, all of which can be implemented
by Givens rotations [11]. To apply the multi-dimensional lifting
scheme for the IntFFT, the DFT of length N

DFTN =

„
1√
N

e
j2πkl

N

«
k,l=0,...,N−1

is first decomposed into the following decimation-in-frequency
form:

DFTN =

„
DFTN/2 0

0 DFTN/2

«
RM, (3)

where

R =

„
IN/2 0

0 WN/2

«
, M = 1√

2

„
IN/2 IN/2

IN/2 −IN/2

«
,

DFTN/2 is a DFT matrix length of N/2, and WN/2 is an N/2 ×
N/2 diagonal matrix whose diagonal elements are twiddle factors

e−j 2π
N

k for k = 0, . . . , N/2 − 1. Since it can be shown that a
DFT can be realized by its inverse DFT (IDFT) by swapping the
real and imaginary part as both pre- and post- processing [12], the
first term of (3) will be„

DFTN/2 0
0 DFTN/2

«
= J

„
DFTN/2 0

0 DFT−1
N/2

«
J,

where

J =

„
IN/2 0

0 jI∗
N/2

«
.

I∗ is a matrix so that all the elements of a matrix which are multi-
plied by I∗ become the complex conjugate. The resulting form of
the decomposition is

DFTN = J

„
DFTN/2 0

0 DFT−1
N/2

«
JRM (4)

Now, the IntFFT of length N can be obtained by decomposing
the second term of (4) into the following three multi-dimensional
lifting steps of length N/2„

DFTN/2 0
0 DFT−1

N/2

«
=

„ −IN/2 0
DFT−1

N/2 IN/2

«„
IN/2 −DFTN/2

0 IN/2

«„
0 IN/2

IN/2 DFT−1
N/2

«

and decomposing R and M into 3N/2 − 3 and 3N classical lift-
ing steps, respectively. It should be noted that the matrix R and the
twiddle factors WN/2 in the matrix R can be realized by the Givens
rotations with rotational angles π

2
and− 2π

N
k for k = 0, . . . , N/2−

1, respectively. The total number of rounding operations is 7.5N−
3 which is about 3.75 rounding operations per real value. Note that
a further reduction of rounding operations is possible by merging
rounding operations, similar to the one described for the Mono
IntMDCT.

5. RESULTS

The approximation accuracy of the multi-dimensional lifting based
IntMDCT and IntFFT is evaluated by applying the transforms to
the audio material used for the lossless audio coding activities of
the ISO MPEG group [13]. The audio material consists of record-
ings of the New York Symphonic Ensemble and Jazz recordings.
The evaluation is done for both 48 kHz / 16 bit and 96 kHz / 24 bit.
The performance of the different transforms is evaluated by mean
squared error (MSE), maximum absolute error and an entropy es-
timate, calculated by

P
k log2(2|yk|+1), where yk represents the

integer spectral values. In the subsequent evaluation, the “number
of instructions” value reflects the number of additions and multi-
plications.
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5.1. IntMDCT

For the IntMDCT, a transform length of 1024 frequency bands is
used. Table 1 shows the results for the conventional lifting based
IntMDCT, the multi-dimensional lifting based Mono IntMDCT,
and, as a reference, the rounded MDCT, which does not allow
lossless operation. The resulting MSE and maximum absolute er-
ror values are similar for both audio input formats, thus only the
overall values are displayed.

Lifting Multi-dim. Rounded
based lifting MDCT

IntMDCT IntMDCT (not lossless)
Rounding
operations
per sample 22.5 4 1
Instructions
per sample 45 32 20
MSE 1.97 0.48 0
max. abs. Error 8 4 0
Entropy estimate
48 kHz 16 bit 1.180 · 108 1.166 · 108 1.160 · 108

Entropy estimate
96 kHz 24 bit 4.145 · 108 4.125 · 108 4.113 · 108

Table 1. Comparison of conventional lifting-based IntMDCT,
multi-dimensional lifting (MDL) based IntMDCT and rounded
MDCT (not lossless)

It can be observed that the approximation error is largely re-
duced by the multi-dimensional lifting approach, and the estimated
entropy comes close to the theoretical limit given by the rounded
MDCT.

5.2. IntFFT

Similarly, the approximation accuracy of the multi-dimensional
lifting based IntFFT is evaluated by comparing the number of
rounding operations and instructions per real value, and MSE with
those of the classical lifting based IntFFT and floating point FFT.
The result is shown in Table 2. The size of the transforms is 512,
which is the size necessary to implement an IntMDCT of length
1024.

Lifting Multi-dim. Float
based lifting FFT

IntFFT IntFFT
Rounding operations
per real value 16.67 3.75 0
Instructions
per real value 33.34 24.02 15.00
MSE 2.69 0.70 0
max. abs. Error 8.24 3.16 0

Table 2. Comparison of conventional lifting-based IntFFT, multi-
dimensional lifting (MDL) based IntFFT and float FFT

These results indicate that the multi-dimensional lifting based
IntFFT can considerably reduce the number of rounding opera-
tions and the resulting MSE is reduced as well compared to the

classical lifting based IntFFT. The computational complexity is
about 3/2 of that of the floating point FFT.

6. CONCLUSIONS

The proposed multi-dimensional lifting approach leads to a sub-
stantial reduction in rounding error compared to conventional one-
dimensional lifting schemes for IntMDCT / IntFFT. Using this new
approach, only 3 or 4 rounding steps per sample are required, in-
dependent of the transform length. This is particularly advanta-
geous for large transform lengths (e.g. 1024) used in audio coding
applications, compared to e.g. 22 rounding steps per sample for
the conventional approach. The new approach decreases compu-
tational complexity significantly compared to previous approaches
for integer transforms. More importantly, the reduction of round-
ing error results in an improved compression performance in the
context of lossless audio coding applications.
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