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ABSTRACT

In this paper we present an efficient bitloading algorithm for sub-
band coding. The goal is to effect an optimal distribution of pos-
itive integer bit values among various subchannels to achieve a
minimum distortion error variance. Existing algorithms in the lit-
erature grow with the total number of bits that must be distributed.
The novelty of our algorithm lies in the fact that its complexity is
independent of the total number of bits to be allocated.

1. INTRODUCTION

An important problem in subband coding is bitloading. Specifi-
cally, for an N -subchannel system in this problem is a special case
of the more general problem of finding bk to

Minimize: P (b1, .., bN ) =

N∑
k=1

φk(bk) (1)

Subject to :
N∑

k=1

bk = B , bk ∈ {0 , 1 , ...B}, (2)

where φk is a convex function, and B is a positive integer. In
subband coding

φk(bk) = αk2−2bk (3)

where αk is determined by the signal variance in the k-th subchan-
nel, [1] and P (b1, .., bN ) is the average distortion variance, and bk

is the bits assigned to the k-th subchannel. Further αk increases
with increasing signal variance.

It is recognized that for general convex functions φk(·), the
above constrained minimization grows in complexity with the size
of B. Since B can be large, it is important to formulate algorithms
for which the complexity bound is independent of B.

φk(bk) = αk2bk (4)

To place this work in context we note the presence of several
bit loading algorithms in the literature but mostly from the com-
munications perspective where

φk(bk) = αk2bk . (5)
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These include, [3], [4], [6], [8], [10]. The two most advanced
and recent are [10] and [3]. The complexity of [10] grows as
O(N log(N)) with the number of subchannels, but linearly with
B. On the other hand [3] provides a suboptimal solution with com-
plexity O(N). Strictly speaking its complexity does not grow with
B, as it restricts the maximum number of bits to be assigned to any
subchannel to some B∗. Instead the complexity grows with B∗.
The assumption of small B∗ is certainly problematic in subband
coding, and even in communications settings when certain sub-
channels experience deep fades. In such a case efficiency may de-
mand that large number bits be assigned to subchannels with more
favorable conditions. A still another contributor to the complexity
of [3] is the dynamic range of αi, which again comes into play in
the presence of deep fades. All other algorithms have run times
that increase with B.

By contrast, we provide an exact solution to (1, 2), under (3),
whose complexity has an upper bound that is determined only by N
and is in fact O(N log N). The role of B is only to induce cyclic
fluctuations in the precise number of computations, and neither B
nor the dynamic range of αk, affects the upper bound of the run
time.

The paper is organized as follows. Section 2 recaps a result
from [13], that is specialized in this paper to formulate the algo-
rithm given in section 3. The complexity and proof of correctness
are provided in Sections 4 and 5, respectively.

2. A GENERAL RESULT

We now present a general result from [13] that solves (1), (2) for
arbitrary convex φk(·). This result is specialized to the case of (3)
in subsequent sections. Denote for k = 1, ..., N, x = 1, ..., B,

δk(x) = φk(x) − φk(x − 1). (6)

The φk’s being convex, it follows that

δk(1) < δk(2) < ... < δk(B), ∀k. (7)

Let S denote the set of smallest B elements of

τ = {δk(x) : k = 1, ..., N, x = 1, ..., B}
The following lemma from [13], gives an optimum solution to (1),
(2).

Lemma 1 The optimal solution b∗ = [b∗1, ..., b
∗
N ]T to problem

(1), (2), is defined as follows

b∗k =

{
0 : δk(1) /∈ S
B : δk(B) ∈ S
y : δk(y) ∈ S, δk(y + 1) /∈ S
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In essence this lemma provides a conceptual framework for
solving (1), (2). Specifically, construct S, and for each k, deter-
mine the largest integer argument bk for which δk(bk) is in S. For
general convex functions φk the complexity of all known solutions
grows with B. In the rest of paper we present an algorithm for the
convex functions of the type (3) whose complexity does not de-
pend on B.

3. PROPOSED LOADING ALGORITHM

In the case of (3), one finds that, with

β = 1/4,

δk(x) = αkβx(β − 1). (8)

The first step of the algorithm requires ordering the αi, and
can be accomplished in O(N log N) steps. Henceforth assume
without sacrificing generality that:

α1 ≥ α2 ≥ · · · ≥ αN (9)

Define the sequence:

li = �logβ(
αi

α1
)�, i = 1, 2, ..., N (10)

with lN+1 = ∞, where �a� is the smallest integer greater than
or equal to a. The significance of the integers li is explained by
Lemma 2

Lemma 2 With li defined in (10),

δ1(li) < δi(1) ≤ δ1(li + 1).

Proof: From (10) we have li = �logβ( αi
α1

)�. The definition of
the ceiling function gives us the following result,

li − 1 < logβ(
αi

α1
) ≤ li.

As β < 1 we have the following

α1β
li−1 > αi ≥ α1β

li . (11)

Multiplying throughout by (β-1) we obtain the result (observe
that β − 1 < 0).

Then the proposed algorithm for solving (1), (2) under (3) is
given below. It assumes that the ordering implicit in (9), has al-
ready occurred, and assigns bi bits to the i-th subchannel.

Proposed algorithm
Step-1: Find the smallest k such that

Rk =

k−1∑
i=1

(lk − li) ≥ B (12)

Then
bi = 0 ∀i ∈ {k, k + 1, · · · , N}. (13)

Step-2: Find
∆ = B − Rk−1 (14)

r = ∆ mod (k − 1) (15)

q = ∆div(k − 1) (16)

Step-3: Find the r smallest elements of the set

{δ1(lk−1 − l1), δ2(lk−1 − l2), · · · , δk−1(0)}. (17)

In particular, with lji such that with lji ∈ {1, 2, · · · , k − 1},
δji(lk−1 − lji) ≤ δji+1(lk−1 − lji+1), (18)

call
J = {j1, j2, ..., jr} . (19)

If r = 0, J is empty.
Step-4: For all i ∈ {1, 2, · · · , k − 1},

bji =

{
lk−1 − li + q + 1 if i ∈ J ,
lk−1 − li + q else.

(20)

4. COMPLEXITY

Observe that the complexity inplicit in achieving (9) is O(N log N).
Determination of k so that (12) holds requires at most 2N opera-
tions, regardless of B. Indeed one has, with

ρ1 = 0

ρn = ρn−1 + ln,

Rn = (n − 1)ln − ρn−1.

The only impact that B has in the complexity of determining k is
that for sufficiently small B, k < N and the number of compu-
tations is further reduced to 2(k − 1). Determining the ranking
manifest in (18) is detrmined only by r and k, and is

O(r log(k − 1)) ≤ O((N − 1) log(N − 1)).

Determination of r requires 2 operations, independent of B. B
does affect the precise value of r, which however is no greater
than N − 1.

Thus the overall complexity, is bounded by O(N log(N)),
with B playing no role in the determination of this bound. The
only effect that B has on the overall complexity is to cause fluc-
tuations in the precise number of operations, within a range that is
independent of B. To recap, these fluctuations occur when:

• For small B, k < N , and finding k requires only 2(k − 1)
operations.

• As B changes r fluctuates between 0 and N − 1, and the
number of operations required to determine the smallest r
elements of the set in (17) changes.

5. PROOF FOR CORRECTNESS

We now show that the algorithm in section 3 does indeed solve (1),
(2), under (5). In view of Lemma 1 it suffices to show that the set

S∗ = {δ1(1), · · · , δ1(b1), δ2(1), · · · , δ2(b2), . . . , δk−1(bk−1)},
(21)

is such that
S∗ = S,

defined in section 2. This in turn requires the demonstration of the
following facts.

(A) |S∗| = |S| = B, where |·| represents the cardinality of its
argument.
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(B) For all i, j ∈ {1, 2, · · · , N},
δi(bi + 1) ≥ δj(bj).

The first theorem proves (A).

Theorem 1 With bi defined in (12-20), |S∗| = B.

Proof: Since bi = 0 for all i ∈ {k, k + 1, · · · , N}, we need to
show that

k−1∑
i=1

bi = B.

From (12-20) we have that

k−1∑
i=1

bi =
∑
i∈J

bi +
∑

i∈{{1,···,k−1}−J}
bi

= r(q + 1) + (k − 1 − r)q +

k−1∑
i=1

(lk−1 − li)

= ∆ + Rk−1

= B.

To prove (B) we need an additional Lemma.

Lemma 3 With li, k and q as in (10-16),

q

{
≤ lk − lk−1 if r = 0
< lk − lk−1 if r �= 0

Proof: From (12-16)

(k − 1)q + r ≤ Rk − Rk−1

=

k∑
i=1

(lk − li) −
k−1∑
i=1

(lk−1 − li)

= (k − 1)(lk − lk−1).

Hence the result.

We now prove (B) for the case where r = 0.

Theorem 2 Consider (10-20). Suppose r = 0. Then (B) above
holds.

Proof:
From Lemma 2 and (11) (multiplying (11) throughout by (β−

1)) we have:

δi(bi) = αiβ
lk−1−li+q−1(β−1) ≤ α1β

lk−1+q−1(β−1) = δ1(b1),
(22)

This shows that δ1(b1) is the largest member of S∗ in (21). From
Lemma 2 and (11), for all i ∈ {1, · · · , k − 1},
δi(bi+1) = αiβ

lk−1−li+q(β−1) > α1β
lk−1+q−1(β−1) = δ1(b1).

(23)
Following the same argument as before from (13), Lemmas 2 and
3 that for all i ∈ {k, k + 1, · · · , N},
δ1(b1) = α1β

lk−1+q−1(β−1) ≤ α1β
lk−1(β−1) < αk = δk(1).

(24)
Equations (22), (23) and (24) prove the result.

Finally we prove (B) for the case where r �= 0.

Theorem 3 Consider (10-20). Suppose r �= 0. Then (B) above
holds.

Proof:
With the indices ji defined in (18), we first show that

δjr ≥ δi(bi) ∀i ∈ {1, · · · , k − 1}. (25)

In view of (18) this is clearly true for i ∈ J . Now consider p ∈
{{1, · · · , k − 1} − J}.

As a result of (20), Lemma 2 and (11) (multiplying (11) through-
out by (β − 1))

δp(bp) = αpβlk−1−lp+q−1(β − 1)

≤ α1β
lk−1+q−1(β − 1)

< αj1βlk−1−lj1+q(β − 1)

= δj1(bj1)

≤ δjr (bjr ),

where the last inequality once again follows from (18).
For all i ∈ {{1, · · · , k − 1} − J}, (18, 19) demonstrate that

δi(bi + 1) ≥ δjr (bjr ). (26)

Further, from Lemma 2 for all i ∈ J ,

δi(bi+1) = αiβ
lk−1−li+q+1(β−1) > α1β

lk−1+q(β−1) ≥ δjr (bjr )(β−1).

Then the result is proved by observing from Lemma 3 that

δjr (bjr ) = αjr βlk−1−ljr +q(β − 1)

≤ αjr βlk−1−ljr−1(β − 1)

≤ α1β
lk−1

< αk = δk(1).

6. CONCLUSIONS

We presented an optimum bit loading algorithm with a run time
of O(N log N) which is more efficient than the ones existing in
the literature, in that its complexity does not depend on the total
number of bits to be allocated. The improvement in performance
is very significant if B is large when compared to N .
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