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ABSTRACT

This paper presents two methods of designing Hybrid Filter
Banks (HFB) taking into account analog filters constraints
resulting from the need of having very simple analog struc-
tures. Therefore standard resonators are considered for the
analog analysis filters. They are seen as input data of the
design process and are kept unmodified throughout the de-
sign procedure. Direct resolution of simplified perfect re-
construction conditions give primary synthesis filters which
can be further optimized in order to minimize the recon-
struction error. Mean aliasing of the designed HFB is below
-80 dB and mean distortion is below 0.15 dB.

1. INTRODUCTION

In wireless communication and a number of other domains,
the demand for higher data rates together with versatility is
always rising. Significant improvements have been achieved
in DSP part of telecom systems, but the A/D conversion
is still a bottleneck. Low costs, for instance, need higher
working frequency whereas higher data rates and versatil-
ity need much wider bandwidths. Parallelization of chan-
nels is a first idea when trying to build a very wide band
ADC. Hybrid Filter Banks (Figure 1) are very good can-
didates to achieve an analog (continuous time) decompo-
sition together with a digital/discrete time recombination.
HFB ADCs were discussed in [1], [2], [3] or [4]. Those
authors gave the right analysis formulas taking into account
the effective sampling within each path. In [5], the authors
present a design algorithm based on the minimization of the
noise energy, derived from a time domain analysis of the
HFB. Velazquez et al. proposed [1] a design method based
on a frequency domain analysis which leads to define both
analysis and synthesis filters. In this paper we propose a
method which takes into account the need of dealing with
available, simple, high speed analog filters that can be found
within a given technology. Indeed, considering cost targets,

these filters can only be implemented with high-frequency
integrated components such as integrated LCs, gmC ampli-
fiers or SAW devices. In any case, only simple transfer
functions can be implemented (typically resonators). The
set of the possible choices for the analog filters being small,
their parameters must be considered as input (prior data) of
the design. The proposed approach starts with the knowl-
edge of the analog transfer functions {Hm(s)} in order to
reach the discrete ones, namely {Fm(z)}. To do this, sev-
eral ideas may be found. One could be to find a digital anal-
ysis filter bank equivalent (in a given frequency band) to the
analog one, then to use the theoretical background of Digi-
tal Filter Banks [6], to get the corresponding synthesis filter
parameters. Another idea is to globally work out the synthe-
sis filter bank from the knowledge of the analog ones. We
will further explore the second idea.

2. HYBRID FILTER BANK BRIEF ANALYSIS

Figure 1 shows an HFB, where H0(s), H1(s), ... , HM−1(s)
are the analog analysis filters and F0(z), F1(z), ... , FM−1(z)
are the digital synthesis filters. A sampler and a quantizer
(block designated by Q) may be found on each channel. The
Fourier transform of the output signal can be written [2]:

Y (ejω) =
M−1∑
m=0

Fm(ejω)Xm(ejωM ), (1)

with ω = ΩT and

Xm(ejωM ) =
1

MT

∞∑
p=−∞

X(jΩ−j
2πp
MT

)Hm(jΩ−j
2πp
MT

).

(2)
Equation (1) can be rewritten as follows:

Y (ejω) =
∞∑

p=−∞
X(jΩ − j

2πp
MT

)Tp(ejω), (3)
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Fig. 1. Hybrid filter bank

where

Tp(ejω) =
1

MT

M−1∑
m=0

Fm(ejω)Hm(jΩ − j
2πp
MT

). (4)

The input signal x(t) is supposed to be band limited to π
T by

some external filter. Then, within the interval − π
T < Ω ≤

π
T , the output is:

Y (ejω) =
M−1∑

p=−(M−1)

X(jΩ − j
2πp
MT

)Tp(ejω). (5)

Furthermore, considering Hm(jΩ) band limited to π
T [2]:

Y (ejω) =
M−1∑
p=0

XS(jΩ − j
2πp
MT

)TS
p (ejω), (6)

where

TS
p (ejω) =

1
MT

M−1∑
m=0

Fm(ejω)HS
m(jΩ − j

2πp
MT

), (7)

XS(jΩ) = X (jΩ) + X (jΩ + j
2π

T
) (8)

and

HS(jΩ) = H (jΩ) + H (jΩ + j
2π

T
). (9)

Perfect reconstruction means that the output is simply a sam-
pled, scaled and delayed version of the input. So, taking into
account equation (6), the perfect reconstruction conditions
are:

TS
p (ejω) =

{
ce−jωd , p = 0
0 , p ∈ {1, ..., (M − 1)}. (10)

TS
0 (ejω), with d ∈ R being the filter bank’s delay and c ∈ R

a scale factor, indicates the HFB’s gain and phase and repre-
sents the distortion function. TS

p (ejω), p ∈ {1, 2, ..., M−1}

are the aliasing functions since they show how the shifted,
unwanted versions of the input are present in the output sig-
nal. Let’s now compare equations (3), (5) and (6). Equa-
tion (3) gives the exact form of the Fourier transform of
the output signal. It can be noticed that it contains an infi-
nite number of terms, so writing the perfect reconstruction
conditions, as in (10) yields a linear system with an infinite
number of equations and M variables, the synthesis func-
tions (as the analysis filters are supposed known see Section
1). The input signal being band limited (3) can be trans-
formed into (5). In (5) the sum has a finite number of terms
which significantly simplifies the design. Still, the sum has
2M − 1 terms, almost twice as much as the sum obtained
in the discrete filter bank case (M terms) [6]. However, it
can be shown that the number of terms in the summation de-
pends on the frequency value considered, in the sense that
for a given Ω0 with −π/T < Ω0 ≤ π/T , (5) has only M
nonzero terms [7], so that the linear system resulting from
the perfect reconstruction conditions has a unique solution
for every frequency value considered. This idea is exploited
by the first synthesis method of the HFB presented here (see
Section 3.1). The expression (6) is a compact form that
reduces the number of terms to M , which simplifies even
more the design. These simplifications result from the band
limited approximation of the input signal and of the analog
analysis filters.

3. SYNTHESIS METHODS

3.1. Direct synthesis method

Equations (10), (7) are written for each frequency value
ωk ∈ {ω1, ω2, ..., ωNf

}, frequency set which covers the
−π < ω ≤ π interval:

T S
p (ωk) =

{
ce−jωkd , p = 0
0 , p ∈ {1, ..., M − 1} (11)

k ∈ {1, 2, ..., Nf},
where:

T S
p (ωk) =

1
MT

M−1∑
m=0

Fm(ωk)HS
m(jΩk − j

2πp
MT

). (12)

As explained in Section 2, equation (11) written for each
p ∈ {0, 1, ...,M − 1} represents an M by M linear equa-
tions system. The unknown variables Fm(ωk) are the ideal
frequency response values of the M synthesis filters, namely
Fm(ejω) in ω = ωk. Solving each of the Nf linear equa-
tion systems for k ∈ {1, 2, ..., Nf}, Nf values for each of
the synthesis functions Fm,m ∈ {0, ..., M − 1} are found
on −π < ω ≤ π. Then the Fm(ejω) functions fitting the
Fm(ωk) values in a squared error sense are obtained for
m ∈ {0, ..., M − 1} and k ∈ {1, 2, ..., Nf}.
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3.2. Error minimization method

Assuming the transfer functions {Hm(jΩ)} are known, the
synthesis transfer functions {Fm(ejω)} must be worked out
in order to have equations (10) satisfied. Let us consider the
following composite criterion:

φ =
∣∣∣∣
∫ π

−π

(
TS

0 (ejω) − ce−jωd
)
dω

∣∣∣∣ +

+
M−1∑
p=1

cp

∣∣∣∣
∫ π

−π

TS
p (ejω)dω

∣∣∣∣ .
(13)

It is clear that minimizing the above criterion is equivalent
to approximately satisfying equations (10). If TS

0 (ejω) is
close to ce−jωd, and TS

p (ejω) are close to zero, the per-
fect reconstruction conditions (10) are closely satisfied. In
this case the above criterion is close to zero as well. The
functions Fm(ejω) that minimize φ are then approximate
solutions of (10). The values cp are used to balance be-
tween distortion and aliasing errors. To ensure an efficient
optimization, the initial values for the wanted filter param-
eters are obtained using the direct method. This minimiza-
tion method leads to significant improvement of the perfor-
mances as compared to the direct one (see next section).

4. FOUR CHANNEL FILTER BANK SIMULATION
RESULTS

A four channel HFB has been designed. As discussed in
Section 1 the analog filters chosen for the filter bank are
very simple structures (2nd order LC filters) in order to ful-
fill technology and cost constraints since high frequency op-
eration is requested. The transfer function of the chosen
resonators is:

Hm(s) =
Ωm

Qm
s

s2 + Ωm

Qm
s + Ω2

m

,m ∈ {1, 2, ..., M − 1}. (14)

This corresponds to a parallel LC structure with

Ωm =
1√

LmCm

, Qm =
Rpm

ΩmLm
.

Rpm is the parasitic resistance of the inductance Lm. For
H0(s), low pass filters are usually considered. Simple RC
circuits are used:

H0(s) =
Ω0

s + Ω0
, Ω0 =

1
R0C0

, (15)

where Ω0 is the cut-off frequency of the filter. 64 length
FIR synthesis filters are considered. Optimization was per-
formed using the standard Nelder-Mead Simplex algorithm,
the variables of this minimization being the FIR filters coef-
ficients [8]. Nf = 128 points were chosen for the discrete
frequency domain, for the computation of the integrals in
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Fig. 2. Magnitude and phase of the distortion function
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Fig. 3. Phase of the ratio R = T0(e
jω)

ce−jωd

(13) and for the resolution of the linear equations systems
obtained in the direct method (see Section 3.1). The con-
stants were c1 = c2 = c3 = 100 to emphasize the mini-
mization of the aliasing errors rather than of the distortion
errors. In Figures 2 and 4, dashed lines stand for the di-
rect method and solid lines stand for the error minimization
method. The magnitude and phase of the resulting distortion
function T0 is shown in Figure 2. Due to the choice of c1,
c2, c3, the minimization procedure doesn’t improve the dis-
tortion function as can be observed in Figure 2 and Figure
3. On the other hand, the aliasing functions considerably
decrease (to illustrate this, T1, T2, T3 were represented in
Figure 4). It may be quoted that the overall resolution of
the global A/D conversion is highly dependent of aliasing
functions. The Table 1 compares the two methods. Figure 3
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Fig. 4. Magnitude of the aliasing functions

Table 1. Method comparison
|T0|(dB) |T1|(dB) |T2|(dB) |T3|(dB)
average average average average

Direct 0.09 -54.19 -52.16 -48.17
Method
Error 0.15 -82.36 -91.36 -84.69

Minimization
method

shows the phase (Phase difference) of the ratio

R =
T0(ejω)
ce−jωd

(16)

for the two methods, with d = 32. Ideally, for an HFB with
no phase distortion, this phase difference must be either 0 (if
d is the system delay) or constant (if d is an arbitrary con-
stant). It can be noticed that the filter bank has an almost
constant group delay of 32 samples. The average deviation
from linear phase is 0.018 radians for the direct method and
0.02 radians for the error minimization method.
Another option for HFB synthesis would be to optimize the
analysis filters in order to minimize an error criterion sim-
ilar to the one in (13) [9]. However, this could raise some
sensitivity problems resulting from the imperfections in the
analog filters realization.

5. CONCLUSION

This paper describes two methods for obtaining the digi-
tal synthesis filters for a HFB, knowing the analog analy-
sis filters. The first one is to solve the perfect reconstruc-
tion conditions (10) on a discrete set of frequencies. The

second method is to minimize an objective function (13),
containing both distortion and aliasing terms. Simulation
results were presented for a four channel HFB. The analog
analysis filters considered here are simple resonators. Even
with these important implementation constraints, the perfor-
mance of the resulting filter banks is quite satisfactory, the
resulting average aliasing error in the second method being
below -80 dB, and the average distortion being 0.15 dB.
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