HOW TO COMPLETE PARAUNITARY FILTER BANKS AND SIMULTANEOUSLY PRESERVE LINEAR PHASE?

Ying-Jui Chen Kevin Amaratunga

Intelligent Eng. Syst. Lab, Massachusetts Inst. Technology Cambridge, MA 02139, USA, http://wavelets.mit.edu Email: {yrchen, kevina}@mit.edu

ABSTRACT

In this paper, the completion of linear-phase paraunitary filter banks (LPPUFBs) is presented. Given an *M*-band LPPUFB-admissible scaling filter $H_0(z)$, the proposed method finds a *complete* parameterization such that the resulting M - 1 bandpass/highpass filters $H_i(z)$ and the given filter $H_0(z)$ form a LPPUFB. Results from completion of a general PUFB will be used in combination with the LP-generating dyadic-based structure, so that the scaling filter $H_0(z)$ of the resulting LPPUFB is as prescribed and linear phase of the filter bank is guaranteed. The design procedure is demonstrated by an example.

1. INTRODUCTION

<u>Notations</u>: Bold-faced characters denote either a column vector or a matrix. For i = 0, ..., M - 1, \mathbf{e}_i is the *i*th unit vector of \mathbb{R}^M . $\mathbf{1}_M$ and $\mathbf{0}_M$ are the *M*-vectors of all ones and all zeros, respectively, and \mathbf{I}_M and \mathbf{J}_M denote the $M \times M$ identity and reverse identity matrices, respectively. An $m \times n$ constant matrix \mathbf{A} is said to be unitary if $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{I}_n$. The McMillan degree and the order of $\mathbf{E}(z)$ are denoted by $\deg(\mathbf{E}(z))$ and $\operatorname{ord}(\mathbf{E}(z))$, respectively.

M-channel maximally decimated filter banks have recently found several applications in signal processing, data compression, and smooth approximation, etc. [1–5]. As shown in Fig. 1, for $i = 0, \ldots, M - 1$, let $H_i(z)$ and $F_i(z)$ denote the analysis and synthesis filters, respectively, where the low-pass filters $H_0(z)$ and $F_0(z)$ are also referred to as the *scaling filters*, as they govern the *M*-band dilation equations for the underlying multiresolution analysis (MRA) of the Hilbert space. These filters are related to the *polyphase* representation through

$$\begin{bmatrix} H_0(z) & \dots & H_{M-1}(z) \end{bmatrix} = \begin{bmatrix} 1 & z^{-1} & \dots & z^{1-M} \end{bmatrix} \mathbf{E}^T(z^M)$$
$$\begin{bmatrix} F_0(z) & \dots & F_{M-1}(z) \end{bmatrix} = \begin{bmatrix} z^{1-M} & \dots & z^{-1} & 1 \end{bmatrix} \mathbf{R}(z^M)$$

where $\mathbf{E}(z)$ and $\mathbf{R}(z)$ are the type-I and type-II polyphase matrices, respectively. Perfect reconstruction (PR) requires that $\mathbf{E}(z)$ be non-singular for all z, so that the analysis filters $H_i(z)$ can be jointly inverted by the synthesis ones $F_i(z)$. Paraunitary filter banks (PUFB) are an important class for which $\mathbf{E}(z)$ is unitary

on the unit circle; as a result, signal energy is preserved, and $F_i(z)$ can be found from $H_i(z)$ by inspection. If all the $H_i(z)$ have symmetry/antisymmetry in their impulse responses, the resulting filter bank is termed *linear-phase* [6,7].

For a causal polyphase matrix $\mathbf{E}(z)$, the *McMillan degree* and the *order* of $\mathbf{E}(z)$ are two important concepts: the McMillan degree refers to the minimum number of delay elements required to implement $\mathbf{E}(z)$. A *minimal* structure is one which uses this minimum number of delay elements in it; as a contrast, the *order* of $\mathbf{E}(z)$ refers to the highest power of z^{-1} appearing in $\mathbf{E}(z)$. For an *M*-band $\mathbf{E}(z)$ of order *L*, the filters $H_i(z)$ will in general have lengths M(L + 1). However, a PUFB of length M(L + 1) can have degree ranging from *L* to *ML*. Gao *et al.* have recently proposed the *order-one* factorization for designing PUFBs with length constraint [8]. In particular, the following dyadic-based structure $\mathbf{W}_m(z)$ is involved:

Lemma 1 (Order-One Factorization) The dyadic-based structure with parameter matrix \mathbf{w}_m

$$\mathbf{W}_m(z) = \mathbf{I} - \mathbf{w}_m \mathbf{w}_m^{\dagger} + z^{-1} \mathbf{w}_m \mathbf{w}_m^{\dagger}, \quad \mathbf{w}_m^{\dagger} \mathbf{w}_m = \mathbf{I}_{\gamma_m}$$
(1.1)

is the order-one paraunitary building block for some integer γ_m with $1 \leq \gamma_m \leq M$. Any order-L paraunitary polyphase matrix $\mathbf{E}(z)$ can be factored as

 $\mathbf{E}(z) = \mathbf{W}_L(z) \, \mathbf{W}_{L-1}(z) \dots \mathbf{W}_1(z) \, \mathbf{E}_0 \tag{1.2}$

for some $M \times M$ unitary \mathbf{E}_0 and some integers $\gamma_1, \ldots, \gamma_L$. This structure is referred to as the order-one factorization of $\mathbf{E}(z)$. It is complete for any given order L.

We will demonstrate how to factor a polyphase *vector* into a product of $\mathbf{W}_m(z)$, based on which the completion of PUFB with linear phase property is obtained.

Filter bank completion is to address the following issue: given partial information in terms of the (admissible) scaling filter $H_0(z)$ of a perfect reconstruction filter bank, how does one come up with a representation that characterizes *all* possible solutions? The significance lies in that the best possible solution is ensured out of the structure used. Conventionally, two methods based on the socalled *degree-one factorization* have been proposed: the one in [9] serves as a way to reduce the number of free parameters and to obtain PUFBs with good performance; while the one in [10-12] requires further specification of an initial unitary matrix \mathbf{E}_0 for the method to work, but it is not clear how to choose E_0 a priori. In both cases, the McMillan degree of the resulting PUFB is limited by that of the polyphase vector of $H_0(z)$, and thus the optimal performance of the PUFB given the filter $H_0(z)$ may not be obtained. A method has been proposed in [13] to overcome such degree limitation. This paper further elaborates on how to ensure linear phase in completing the PUFB.

2. PARAUNITARY FILTER BANK COMPLETION

2.1. General Theory

Though focusing on real-valued vectors, the following can be extended to a complex vector space in a straightforward fashion [14].

Definition 1 (Householder Matrix) Given a vector $\mathbf{x} \in \mathbb{R}^{M}$, we define $\mathbf{R}[\mathbf{x}]$ to be the Householder matrix such that $\mathbf{R}[\mathbf{x}] \mathbf{x} = \|\mathbf{x}\| \mathbf{e}_0$ or that $\mathbf{x} = \|\mathbf{x}\| \mathbf{R}[\mathbf{x}] \mathbf{e}_0$. In case where $\mathbf{x} = \alpha \mathbf{e}_0$ for some scalar $\alpha > 0$, we define $\mathbf{R}[\alpha \mathbf{e}_0] = \mathbf{I}$.

2.1.1. Degree-One Completion of PUFBs

As a special case of $\mathbf{W}_m(z)$ as in (1.1) with $\gamma_m = 1$, the following dyadic-based structure

$$\mathbf{V}_m(z) \triangleq \mathbf{I} - \mathbf{v}_m \mathbf{v}_m^{\dagger} + z^{-1} \mathbf{v}_m \mathbf{v}_m^{\dagger}$$
(2.1)

with $\|\mathbf{v}_m\| = 1$ is the *degree-one* paraunitary building block [9, 14]: deg($\mathbf{V}_m(z)$) = 1. Any degree-*N* FIR $M \times 1$ causal lossless transfer function $\mathbf{p}(z)$ can be *uniquely* factorized as [9, 14]

$$\mathbf{p}(z) = \mathbf{V}_N(z) \dots \mathbf{V}_1(z) \,\mathbf{p}_0 \tag{2.2}$$

for some degree-one building blocks $\mathbf{V}_m(z)$ as in (2.1) and $M \times 1$ unitary $\mathbf{p}_0 = \mathbf{p}(1)$. One can then parameterize any degree-*N* PUFB $\mathbf{E}(z)$ with $\mathbf{p}(z)$ being the polyphase vector of the scaling filter $H_0(z)$ as [9, 13]:

$$\mathbf{E}^{T}(z) = \|\mathbf{p}_{0}\| \mathbf{V}_{N}(z) \dots \mathbf{V}_{1}(z) \mathbf{R}[\mathbf{p}_{0}] \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & \boldsymbol{\Theta} \end{bmatrix}.$$
 (2.3)

We refer to (2.3) as the *degree-one completion* of $\mathbf{E}(z)$, for which the $(M-1) \times (M-1)$ unitary matrix Θ contains all the degrees of freedom, and can be parameterized by Householder matrices or by planar rotations [14, 15]. The resulting $\mathbf{E}(z)$ is paraunitary.

However, the degree-one completion of $\mathbf{E}(z)$ in (2.3) is *degree-constrained* in that it spans *only* the set of PUFBs of the same degree as $\mathbf{p}(z)$, with $\mathbf{p}^{T}(z)$ being the 0th row of $\mathbf{E}(z)$. Namely, the resulting $\mathbf{E}(z)$ is so constrained that

$$\deg(\mathbf{E}(z)) = \operatorname{ord}(\mathbf{E}(z)) \equiv \deg(\mathbf{p}(z)).$$

In general, deg($\mathbf{E}(z)$) is no less than ord($\mathbf{E}(z)$), and oftentimes it is desirable to allow for such a possibility. For example, suppose that $\mathbf{p}(z)$ of order L is causal and is the vector of the M polyphase components of a PUFB-admissible linear-phase filter $H_0(z)$. If $\mathbf{E}(z)$ of order L corresponds to a linear-phase PUFB, its degree must be $\frac{ML}{2}$ [6, 14], which is greater than L and hence is not possible under (2.3). Furthermore, experiments indicate that, given the order of $\mathbf{E}(z)$, PUFBs with better performance are usually obtained by allowing deg($\mathbf{E}(z)$) > ord($\mathbf{E}(z)$).

2.1.2. Order-One Completion of PUFBs

To relax the degree constraint on the resulting PUFBs which is intrinsic in the degree-one completion (2.3), the so-called *order-one completion* has been proposed in [13], which states that given an $M \times 1$ FIR lossless causal transfer function

$$\mathbf{p}(z) = \mathbf{a}_0 + \mathbf{a}_1 z^{-1} + \ldots + \mathbf{a}_L z^{-L}$$

of order or degree¹ L, there exist (non-unique) order-one PU building blocks $\hat{\mathbf{W}}_m(z)$ as in (1.1) such that²

$$\mathbf{p}(z) = \hat{\mathbf{W}}_L(z) \dots \hat{\mathbf{W}}_1(z) \mathbf{p}_0 \tag{2.4}$$

where $\mathbf{p}_0 = \mathbf{p}(1)$. In particular, we have for $\hat{\mathbf{W}}_L(z)$ that its $M \times \gamma_L$ unitary parameter matrix $\hat{\mathbf{w}}_L$ takes the form

$$\hat{\mathbf{w}}_{L} \triangleq \left[\begin{array}{c} |\\ \frac{\mathbf{a}_{L}}{\|\mathbf{a}_{L}\|} \\ | \end{array} \right] \mathbf{B}_{L}$$
(2.5)

where \mathbf{B}_L consists of $\gamma_L - 1$ orthonormal columns that are orthogonal to both \mathbf{a}_0 and \mathbf{a}_L , and can be parameterized as follows:

$$\mathbf{B}_{L} = \mathbf{R}_{0L} \begin{bmatrix} -\mathbf{0}^{T} - \\ -\mathbf{0}^{T} - \\ \hline \mathbf{\Theta}_{L} \end{bmatrix}, \qquad (2.6)$$

where Θ_L is $(M-2) \times (\gamma_L - 1)$ unitary and \mathbf{R}_{0L} is the Householder transform such that $\begin{bmatrix} \frac{\mathbf{a}_0}{\|\mathbf{a}_0\|} & \frac{\mathbf{a}_L}{\|\mathbf{a}_L\|} \end{bmatrix} = \mathbf{R}_{0L} \begin{bmatrix} \mathbf{e}_0 & \mathbf{e}_1 \end{bmatrix}$. The other order-one building blocks $\hat{\mathbf{W}}_m(z)$, m < L, are obtained in the same way (through some unitary \mathbf{B}_m in the fashion of (2.6)) after repeated order reductions on $\mathbf{p}(z)$ [13]. As the choice of \mathbf{B}_m is not unique (unless $\gamma_m = 1$), so is the order-one factorization (2.4) of $\mathbf{p}(z)$. The corresponding extra degrees of freedom are captured by Θ_m of the above Householder parameterization of \mathbf{B}_m , and are used in completion of $\mathbf{E}(z)$, which is given by

$$\mathbf{E}^{T}(z) = \|\mathbf{p}_{0}\| \, \hat{\mathbf{W}}_{L}(z) \dots \hat{\mathbf{W}}_{1}(z) \mathbf{R}[\mathbf{p}_{0}] \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & \boldsymbol{\Theta} \end{bmatrix}, \quad (2.7)$$

where $\boldsymbol{\Theta}$ is $(M-1)\times(M-1)$ unitary. Worth noting is the identification

$$\mathbf{R}[\mathbf{p}_0] \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{\Theta} \end{bmatrix} \equiv \mathbf{E}_0^T$$
(2.8)

between (2.7) and (1.2), which results if we set z = 1 in both (2.7) and (1.2).

Notice that (2.7) is transposed, not in the standard form given by (1.2). Plugging (2.8) in and transposing (2.7), we have

$$\mathbf{E}(z) = \|\mathbf{p}_0\| \mathbf{E}_0 \hat{\mathbf{W}}_1^T(z) \dots \hat{\mathbf{W}}_L^T(z)$$

= $\|\mathbf{p}_0\| \mathbf{W}_L(z) \dots \mathbf{W}_1(z) \mathbf{E}_0,$ (2.9)

where the mappings are

$$\mathbf{W}_m(z) \triangleq \mathbf{E}_0 \hat{\mathbf{W}}_{L-m+1}^T(z) \mathbf{E}_0^{\dagger}$$
 and (2.10a)

$$\mathbf{w}_m \stackrel{\Delta}{=} \mathbf{E}_0 \hat{\mathbf{w}}_{L-m+1}^*. \tag{2.10b}$$

We refer to (2.9) as the *order-one completion* of (causal) $\mathbf{E}(z)$ of order *L*, of which the free parameters are embedded in each Θ_m of \mathbf{B}_m as well as in Θ . This is a *complete* parameterization of $\mathbf{E}(z)$ having $\mathbf{p}^T(z)$ as its top row.

¹For an $M \times 1$ FIR causal $\mathbf{p}(z)$, deg $(\mathbf{p}(z)) = \operatorname{ord}(\mathbf{p}(z))$.

²We reserve the notation $\mathbf{W}_m(z)$ for order-one completion of PUFBs to avoid possible confusion.

2.2. PUFB Completion with Linear Phase Property

It is shown in [16] that the following specialization of the orderone factorization (1.2) corresponds to *M*-channel LPPUFBs (*M* even): for m = 1, 2, ..., L, parameterize the $M \times \frac{M}{2}$ unitary matrix \mathbf{w}_m as

$$\mathbf{w}_m = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{U}_m \\ \mathbf{V}_m \end{bmatrix}$$
(2.11a)

and the initial unitary matrix \mathbf{E}_0 as

$$\mathbf{E}_{0} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{U}_{0} & \mathbf{U}_{0}\mathbf{J} \\ \mathbf{V}_{0} & -\mathbf{V}_{0}\mathbf{J} \end{bmatrix}, \qquad (2.11b)$$

where \mathbf{U}_i and \mathbf{V}_i are $\frac{M}{2} \times \frac{M}{2}$ orthonormal. To ensure linear phase property of the completed PUFB, both (2.11a) and (2.11b) must be satisfied on top of the order-one completion (2.9). As $\mathbf{p}(z)$ is the polyphase vector of a LPPUFBadmissible scaling filter $H_0(z)$, it can be shown that $\mathbf{p}_0 \triangleq \mathbf{p}(z)|_{z=1}$ always takes the following symmetric form:

$$\|\mathbf{p}_0\|^{-1}\mathbf{p}_0^T = \begin{bmatrix} \hat{\mathbf{u}}_0^T & \hat{\mathbf{u}}_0^T \mathbf{J} \end{bmatrix}$$
, some $\hat{\mathbf{u}}_0$ with $\|\hat{\mathbf{u}}_0\| = \frac{1}{\sqrt{2}}$,

which should be the 0th row of E_0 in (2.11b). Therefore, it is necessary and sufficient that the matrix U_0 of E_0 satisfy

$$\mathbf{e}_0^T \mathbf{U}_0 = \sqrt{2} \hat{\mathbf{u}}_0^T \tag{2.12}$$

in order for the scaling filter of the resulting PUFB to be as prescribed.

Having constrained \mathbf{E}_0 by (2.12), we now proceed to parameterize \mathbf{w}_m in such a way that the condition of order-one completion on $\hat{\mathbf{w}}_{L-m+1}$ in (2.5) holds. As the procedure of order-one completion calculates $\hat{\mathbf{w}}_L$ before the others, \mathbf{w}_1 is determined first by (2.10). In particular, assuming \mathbf{E}_0 (or \mathbf{U}_0 and \mathbf{V}_0) has been chosen, it must be true that

$$\begin{bmatrix} \mathbf{U}_{1} \\ \mathbf{V}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{0} & \mathbf{U}_{0}\mathbf{J} \\ \mathbf{V}_{0} & -\mathbf{V}_{0}\mathbf{J} \end{bmatrix} \underbrace{\begin{bmatrix} \frac{\mathbf{a}_{L}^{0}}{\|\mathbf{a}_{L}\|} & \mathbf{B}_{L}^{0} \\ \vdots \\ \frac{\mathbf{a}_{L}^{1}}{\|\mathbf{a}_{L}\|} & \mathbf{B}_{L}^{1} \end{bmatrix}}_{\hat{\mathbf{W}}_{L}}$$
(2.13)

where $\hat{\mathbf{w}}_L$ has been partitioned into upper and lower $\frac{M}{2}$ rows as shown. As \mathbf{a}_L in $\hat{\mathbf{w}}_L$ is given, the 0th columns of \mathbf{U}_1 and \mathbf{V}_1 are fixed:

$$\mathbf{U}_{1}\mathbf{e}_{0} = \mathbf{U}_{0}\left(\frac{\mathbf{a}_{L}^{0}}{\|\mathbf{a}_{L}\|} + \frac{\mathbf{J}\mathbf{a}_{L}^{1}}{\|\mathbf{a}_{L}\|}\right)$$
(2.14a)

$$\mathbf{V}_{1}\mathbf{e}_{0} = \mathbf{V}_{0}\left(\frac{\mathbf{a}_{L}^{0}}{\|\mathbf{a}_{L}\|} - \frac{\mathbf{J}\mathbf{a}_{L}^{1}}{\|\mathbf{a}_{L}\|}\right). \quad (2.14b)$$

It remains to ensure that columns of \mathbf{B}_L are orthogonal to both \mathbf{a}_L and \mathbf{a}_0 , as is required by order-one completion of $\mathbf{E}(z)$ given $\mathbf{p}^{T}(z)$ as the 0th row. The key is to parameterize \mathbf{U}_{1} and \mathbf{V}_{1} appropriately. Observe that any unitary U_1 and V_1 satisfying (2.14) will guarantee $\mathbf{B}_L^T \mathbf{a}_L = \mathbf{0}$ as a result of (2.13). To ensure $\mathbf{B}_L^T \mathbf{a}_0 = \mathbf{0}$, consider augmenting $\hat{\mathbf{w}}_L$ with $\frac{\mathbf{a}_0}{\|\mathbf{a}_0\|}$ and premultiplying by \mathbf{E}_0 :

$$\mathbf{E}_{0} \begin{bmatrix} \hat{\mathbf{w}}_{L} & \begin{vmatrix} \mathbf{a}_{0}^{*} \\ \|\mathbf{a}_{0}\| \\ \|\mathbf{a}_{0}\| \end{vmatrix} \\ = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{U}_{1} & |\mathbf{u}_{1} \\ \mathbf{V}_{1} & |\mathbf{v}_{1} \end{bmatrix}$$
(2.15)

where the column vectors \mathbf{u}_1 and \mathbf{v}_1 are given by

$$\mathbf{u}_1 = \mathbf{U}_0 \left(\frac{\mathbf{a}_0^0}{\|\mathbf{a}_0\|} + \frac{\mathbf{J}\mathbf{a}_0^1}{\|\mathbf{a}_0\|} \right)$$
(2.16a)

$$\mathbf{v}_1 = \mathbf{V}_0 \left(\frac{\mathbf{a}_0^0}{\|\mathbf{a}_0\|} - \frac{\mathbf{J}\mathbf{a}_0^1}{\|\mathbf{a}_0\|} \right).$$
(2.16b)

As the LHS of (2.15) is unitary by construction, so is the RHS. Therefore,

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{U}_1 \mid \mathbf{u}_1 \\ \mathbf{V}_1 \mid \mathbf{v}_1 \end{bmatrix}^T \begin{bmatrix} \mathbf{U}_1 \mid \mathbf{u}_1 \\ \mathbf{V}_1 \mid \mathbf{v}_1 \end{bmatrix}$$
(2.17)

from which we have

$$\mathbf{U}_1^T \mathbf{u}_1 = -\mathbf{V}_1^T \mathbf{v}_1 \tag{2.18}$$

$$|\mathbf{u}_1||^2 + ||\mathbf{v}_1||^2 = 2.$$
 (2.19)

Since U_1 and V_1 are unitary, we conclude that u_1 and v_1 are unit-norm.

As the 0th columns of U_1 and V_1 are fixed as in (2.14), one can show that the top-most equation in (2.18) is automatically satisfied as a result of (2.14). In particular, it can be shown that

$$\mathbf{e}_0^T \mathbf{U}_1^T \mathbf{u}_1 = rac{\mathbf{a}_L^T \mathbf{J} \mathbf{a}_0}{\|\mathbf{a}_L\| \|\mathbf{a}_0\|} = -\mathbf{e}_0^T \mathbf{V}_1^T \mathbf{v}_1.$$

Therefore, it remains to jointly parameterize \mathbf{U}_1 and \mathbf{V}_1 in such a way that $\mathbf{e}_k^T \mathbf{U}_1^T \mathbf{u}_1 = -\mathbf{e}_k^T \mathbf{V}_1^T \mathbf{v}_1$ for $k = 1, 2, \dots, \frac{M}{2} - 1$. This can be achieved by first choosing V_1 subject to (2.14), and then letting U_1 depend on it (or vice versa).

2.2.1. Joint Parameterization of U_1 and V_1

Suppose V_1 has been chosen subject to (2.14). Then the RHS of (2.18) is a fixed vector with unit norm. This takes away a few degrees of freedom from U_1 , and we are interested in identifying the remaining degrees of freedom in U_1 , for which the Householder matrix is found to be useful. According to (2.18), one can write

$$\mathbf{u}_1 = \mathbf{U}_1(-\mathbf{V}_1^T\mathbf{v}_1) \triangleq \mathbf{U}_1\mathbf{b}_1.$$

By assumption, b_1 is known and unit-norm, and can be written as $\mathbf{b}_1 = \mathbf{R}[\mathbf{b}_1] \mathbf{e}_0$. Hence,

$$\mathbf{u}_1 = \mathbf{U}_1 \mathbf{R}[\mathbf{b}_1] \, \mathbf{e}_0,$$

which implies that the 0th column of $U_1 R[b_1]$ is u_1 . Applying $\mathbf{R}[\mathbf{u}_1]$ to $\mathbf{U}_1\mathbf{R}[\mathbf{b}_1]$, we arrive at

for some $(\frac{M}{2}-1) \times (\frac{M}{2}-1)$ unitary matrix Φ_1 which consists of all the remaining degrees of freedom for U_1 given V_1 . Therefore, we have shown that U_1 can be parameterized as

$$\mathbf{U}_1 = \mathbf{R}[\mathbf{u}_1] \cdot \operatorname{diag}(1, \mathbf{\Phi}_1) \cdot \mathbf{R}[\mathbf{b}_1]$$
(2.20)

once V_1 has been chosen subject to (2.14). Note that U_1 and V_1 so obtained guarantee that $\hat{\mathbf{w}}_L$ given by

$$\hat{\mathbf{w}}_{L} = \frac{1}{2} \begin{bmatrix} \mathbf{U}_{0} & \mathbf{U}_{0} \mathbf{J} \\ \mathbf{V}_{0} & -\mathbf{V}_{0} \mathbf{J} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{U}_{1} \\ \mathbf{V}_{1} \end{bmatrix}$$
(2.21)

is orthonormal and orthogonal to \mathbf{a}_0 as required, with the 0th column being exactly $\frac{\mathbf{a}_L}{\|\mathbf{a}_L\|}$.

2.2.2. Order Reduction

So far, we have parameterized the initial unitary matrix \mathbf{E}_0 and the building block $\mathbf{W}_1(z)$ or $\hat{\mathbf{W}}_L(z)$ of the order-one completion of $\mathbf{E}(z)$ as in (2.9), while simultaneously imposing the linear phase property. The obtained $\hat{\mathbf{W}}_L(z)$ is then used to reduce the order of $\mathbf{p}(z)$ by one as described in [13]. In particular, $\mathbf{p}'(z) \triangleq$ $\hat{\mathbf{W}}_L(z^{-1})\mathbf{p}(z)$ will be LPPUFB-admissible with order L-1, and the above procedure is repeated on

$$\mathbf{p}'(z) = \mathbf{a}'_0 + \mathbf{a}'_1 z^{-1} + \ldots + \mathbf{a}'_{L-1} z^{-(L-1)}$$

to obtain \mathbf{U}_2 and \mathbf{V}_2 , and so on and so forth. Note that once determined in the initial iteration, \mathbf{E}_0 will be used throughout the completion of $\mathbf{E}(z)$. The is a *complete* parameterization of all LPPUFBs $\mathbf{E}(z)$ having $\mathbf{p}^T(z)$ as its 0th row.

3. DESIGN EXAMPLE

We demonstrate the proposed theory by completing an 8×40 LP-PUFB given a LPPUFB-admissible scaling filter $H_0(z)$ which is shown in Fig. 2 along with the resulting completion. As a contrast, using the same admissible $H_0(z)$, the completion of a general PUFB is shown in Fig. 3 based on the order-one completion [13], for which M = 8, L = 4, and $\gamma_m = M/2 = 4$, m = 1, 2, 3, 4. It is obvious that the proposed PUFB completion does ensure linear phase while guaranteeing $H_0(z)$ as prescribed.

4. CONCLUSION

We have presented LPPUFB completion given an *M*-band LPPUFBadmissible scaling filter $H_0(z)$. A *complete* parameterization of all such PUFBs is proposed which ensures that the resulting M - 1bandpass/highpass filters $H_i(z)$ and the given filter $H_0(z)$ form a LPPUFB. Results from completion of a general PUFB are used in combination with the LP-generating dyadic-based structure, so that the scaling filter of the resulting LPPUFB is as prescribed and linear phase of the filter bank is guaranteed. A completion example is presented.

5. REFERENCES

- G. Strang and T. Nguyen, *Wavelets and Filter Banks*. Wellesley, MA: Wellesley-Cambridge Press, second ed., 1997.
- [2] B. W. Suter, *Multirate and Wavelet Signal Processing*. San Diego: Academic Press, 1 ed., Jan. 1998.
- [3] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
- [4] M. Vetterli and H. Kovačević, *Wavelets and Subband Coding*. Prentice Hall, 1995.
- [5] C. Burrus, R. Gopinath, and H. Guo, *Introduction to Wavelets* and *Wavelet Transforms: A Primer*. Prentice Hall, 1998.
- [6] R. de Queiroz, T. Nguyen, and K. Rao, "The GenLOT: Generalized linear-phase lapped orthogonal transform," *IEEE Trans. Signal Processing*, vol. 44, no. 3, pp. 497–507, 1996.
- [7] T. Tran, R. de Queiroz, and T. Nguyen, "Linear-phase perfect reconstruction filter bank: lattice structure, design, and application in image coding," *IEEE Trans. Signal Processing*, vol. 48, pp. 133–147, Jan. 2000.
- [8] X. Gao, T. Q. Nguyen, and G. Strang, "On factorization of *M*-channel paraunitary filterbanks," *IEEE Trans. Signal Pro*cessing, vol. 49, pp. 1433–1446, Jul. 2001.

Fig. 3. Order-one completion of general 8×40 PUFB.

- [9] P. Vaidyanathan, T. Nguyen, Z. Doğanata, and T. Saramäki, "Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices," *IEEE Trans. Signal Processing*, vol. 37, pp. 1042–1056, Jul. 1989.
- [10] P. N. Heller and H. L. Resnikoff, "Regular *M*-band wavelets and applications," in *Proc. IEEE Int'l Conf. Acoust., Speech, Signal Processing*, vol. 3, pp. 229–232, Apr. 1993.
- [11] P. N. Heller, "Rank M wavelets with N vanishing moments," J. Matrix Anal. Appl., vol. 16, pp. 502–519, Apr. 1995.
- [12] P. Steffen, P. N. Heller, R. A. Gopinath, and C. S. Burrus, "Theory of regular *M*-band wavelet bases," *IEEE Trans. Signal Processing*, vol. 41, pp. 3497–3510, Dec. 1993.
- [13] Y.-J. Chen and K. Amaratunga, "On completion of *M*channel perfect reconstruction filter banks with prescribed admissible FIR scaling filter," in *Proc. IEEE Int'l Symp. Circuits Syst.*, May 2004.
- [14] P. P. Vaidyanathan, *Multirate Systems and Filter Banks*. Prentice Hall, 1992.
- [15] F. D. Murnaghan, *The Unitary and Rotation Groups*. Washington, D.C.: Spartan Books, 1962.
- [16] K. Amaratunga, Y.-J. Chen, and S. Oraintara, "Characterization of regular linear-phase paraunitary filter banks using dyadic-based structures," in *Proc. IEEE Int'l Symp. Circuits Syst.*, May 2004.