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ABSTRACT

In this paper, the completion of linear-phase paraunitary filter banks
(LPPUFBs) is presented. Given an M -band LPPUFB-admissible
scaling filter H0(z), the proposed method finds a complete param-
eterization such that the resulting M − 1 bandpass/highpass filters
Hi(z) and the given filter H0(z) form a LPPUFB. Results from
completion of a general PUFB will be used in combination with
the LP-generating dyadic-based structure, so that the scaling filter
H0(z) of the resulting LPPUFB is as prescribed and linear phase
of the filter bank is guaranteed. The design procedure is demon-
strated by an example.

1. INTRODUCTION

Notations: Bold-faced characters denote either a column vector
or a matrix. For i = 0, . . . , M − 1, ei is the ith unit vector of
R

M . 1M and 0M are the M -vectors of all ones and all zeros, re-
spectively, and IM and JM denote the M×M identity and reverse
identity matrices, respectively. An m×n constant matrix A is said
to be unitary if A†A = In. The McMillan degree and the order
of E(z) are denoted by deg(E(z)) and ord(E(z)), respectively.

M -channel maximally decimated filter banks have recently
found several applications in signal processing, data compression,
and smooth approximation, etc. [1–5]. As shown in Fig. 1, for
i = 0, . . . , M − 1, let Hi(z) and Fi(z) denote the analysis and
synthesis filters, respectively, where the low-pass filters H0(z) and
F0(z) are also referred to as the scaling filters, as they govern
the M -band dilation equations for the underlying multiresolution
analysis (MRA) of the Hilbert space. These filters are related to
the polyphase representation throughˆ

H0(z) . . . HM−1(z)
˜

=
ˆ

1 z−1 . . . z1−M
˜
ET (zM )ˆ

F0(z) . . . FM−1(z)
˜

=
ˆ

z1−M . . . z−1 1
˜
R(zM )

where E(z) and R(z) are the type-I and type-II polyphase matri-
ces, respectively. Perfect reconstruction (PR) requires that E(z)
be non-singular for all z, so that the analysis filters Hi(z) can
be jointly inverted by the synthesis ones Fi(z). Paraunitary fil-
ter banks (PUFB) are an important class for which E(z) is unitary

�������

�������

�	
�
�������

�������

�	
�

�

�

�

�

�������
���

� � �������
���

(a) M -channel fi lter bank
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(b) the polyphase representation

Fig. 1. M -band perfect reconstruction filter bank.

on the unit circle; as a result, signal energy is preserved, and Fi(z)
can be found from Hi(z) by inspection. If all the Hi(z) have sym-
metry/antisymmetry in their impulse responses, the resulting filter
bank is termed linear-phase [6, 7].

For a causal polyphase matrix E(z), the McMillan degree and
the order of E(z) are two important concepts: the McMillan de-
gree refers to the minimum number of delay elements required to
implement E(z). A minimal structure is one which uses this min-
imum number of delay elements in it; as a contrast, the order of
E(z) refers to the highest power of z−1 appearing in E(z). For
an M -band E(z) of order L, the filters Hi(z) will in general have
lengths M(L + 1). However, a PUFB of length M(L + 1) can
have degree ranging from L to ML. Gao et al. have recently pro-
posed the order-one factorization for designing PUFBs with length
constraint [8]. In particular, the following dyadic-based structure
Wm(z) is involved:

Lemma 1 (Order-One Factorization) The dyadic-based structure
with parameter matrix wm

Wm(z) = I− wmw†
m + z−1wmw†

m, w†
mwm = Iγm (1.1)

is the order-one paraunitary building block for some integer γm

with 1 ≤ γm ≤ M . Any order-L paraunitary polyphase matrix
E(z) can be factored as

E(z) = WL(z)WL−1(z) . . . W1(z)E0 (1.2)

for some M × M unitary E0 and some integers γ1, . . . , γL. This
structure is referred to as the order-one factorization of E(z). It is
complete for any given order L.

We will demonstrate how to factor a polyphase vector into a
product of Wm(z), based on which the completion of PUFB with
linear phase property is obtained.

Filter bank completion is to address the following issue: given
partial information in terms of the (admissible) scaling filter H0(z)
of a perfect reconstruction filter bank, how does one come up with
a representation that characterizes all possible solutions? The sig-
nificance lies in that the best possible solution is ensured out of
the structure used. Conventionally, two methods based on the so-
called degree-one factorization have been proposed: the one in [9]
serves as a way to reduce the number of free parameters and to
obtain PUFBs with good performance; while the one in [10–12]
requires further specification of an initial unitary matrix E0 for the
method to work, but it is not clear how to choose E0 a priori. In
both cases, the McMillan degree of the resulting PUFB is limited
by that of the polyphase vector of H0(z), and thus the optimal per-
formance of the PUFB given the filter H0(z) may not be obtained.
A method has been proposed in [13] to overcome such degree lim-
itation. This paper further elaborates on how to ensure linear phase
in completing the PUFB.
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2. PARAUNITARY FILTER BANK COMPLETION

2.1. General Theory

Though focusing on real-valued vectors, the following can be ex-
tended to a complex vector space in a straightforward fashion [14].

Definition 1 (Householder Matrix) Given a vector x ∈ R
M , we

define R[x] to be the Householder matrix such that R[x]x =
‖x‖e0 or that x = ‖x‖R[x] e0. In case where x = αe0 for some
scalar α > 0, we define R[αe0] = I.

2.1.1. Degree-One Completion of PUFBs

As a special case of Wm(z) as in (1.1) with γm = 1, the following
dyadic-based structure

Vm(z) � I − vmv†
m + z−1vmv†

m (2.1)

with ‖vm‖ = 1 is the degree-one paraunitary building block [9,
14]: deg(Vm(z)) = 1. Any degree-N FIR M × 1 causal lossless
transfer function p(z) can be uniquely factorized as [9, 14]

p(z) = VN(z) . . .V1(z)p0 (2.2)

for some degree-one building blocks Vm(z) as in (2.1) and M×1
unitary p0 = p(1). One can then parameterize any degree-N PUFB
E(z) with p(z) being the polyphase vector of the scaling filter
H0(z) as [9, 13]:

ET (z) = ‖p0‖VN (z) . . . V1(z)R[p0]

"
1 0T

0 Θ

#
. (2.3)

We refer to (2.3) as the degree-one completion of E(z), for which
the (M − 1)× (M − 1) unitary matrix Θ contains all the degrees
of freedom, and can be parameterized by Householder matrices or
by planar rotations [14, 15]. The resulting E(z) is paraunitary.

However, the degree-one completion of E(z) in (2.3) is degree-
constrained in that it spans only the set of PUFBs of the same de-
gree as p(z), with pT (z) being the 0th row of E(z). Namely, the
resulting E(z) is so constrained that

deg(E(z)) = ord(E(z)) ≡ deg(p(z)).

In general, deg(E(z)) is no less than ord(E(z)), and oftentimes
it is desirable to allow for such a possibility. For example, suppose
that p(z) of order L is causal and is the vector of the M polyphase
components of a PUFB-admissible linear-phase filter H0(z). If
E(z) of order L corresponds to a linear-phase PUFB, its degree
must be ML

2
[6, 14], which is greater than L and hence is not pos-

sible under (2.3). Furthermore, experiments indicate that, given
the order of E(z), PUFBs with better performance are usually ob-
tained by allowing deg(E(z)) > ord(E(z)).

2.1.2. Order-One Completion of PUFBs

To relax the degree constraint on the resulting PUFBs which is
intrinsic in the degree-one completion (2.3), the so-called order-
one completion has been proposed in [13], which states that given
an M × 1 FIR lossless causal transfer function

p(z) = a0 + a1z
−1 + . . . + aLz−L

of order or degree1 L, there exist (non-unique) order-one PU build-
ing blocks Ŵm(z) as in (1.1) such that2

p(z) = ŴL(z) . . .Ŵ1(z)p0 (2.4)

where p0 = p(1). In particular, we have for ŴL(z) that its M ×
γL unitary parameter matrix ŵL takes the form

ŵL �

2
4 |

aL
‖aL‖ BL

|

3
5 (2.5)

where BL consists of γL − 1 orthonormal columns that are ortho-
gonal to both a0 and aL, and can be parameterized as follows:

BL = R0L

2
64 − 0T−

− 0T−
ΘL

3
75 , (2.6)

where ΘL is (M − 2) × (γL − 1) unitary and R0L is the House-

holder transform such that
h

a0
‖a0‖

aL
‖aL‖

i
= R0L

ˆ
e0 e1

˜
.

The other order-one building blocks Ŵm(z), m < L, are ob-
tained in the same way (through some unitary Bm in the fashion of
(2.6)) after repeated order reductions on p(z) [13]. As the choice
of Bm is not unique (unless γm = 1), so is the order-one factor-
ization (2.4) of p(z). The corresponding extra degrees of freedom
are captured by Θm of the above Householder parameterization of
Bm, and are used in completion of E(z), which is given by

ET (z) = ‖p0‖ŴL(z) . . .Ŵ1(z)R[p0]

"
1 0T

0 Θ

#
, (2.7)

where Θ is (M − 1) × (M − 1) unitary. Worth noting is the
identification

R[p0]

"
1 0T

0 Θ

#
≡ ET

0 (2.8)

between (2.7) and (1.2), which results if we set z = 1 in both (2.7)
and (1.2).

Notice that (2.7) is transposed, not in the standard form given
by (1.2). Plugging (2.8) in and transposing (2.7), we have

E(z) = ‖p0‖E0Ŵ
T
1 (z) . . .ŴT

L(z)

= ‖p0‖WL(z) . . .W1(z)E0, (2.9)

where the mappings are

Wm(z) � E0Ŵ
T
L−m+1(z)E†

0 and (2.10a)

wm � E0ŵ
∗
L−m+1. (2.10b)

We refer to (2.9) as the order-one completion of (causal) E(z) of
order L, of which the free parameters are embedded in each Θm

of Bm as well as in Θ. This is a complete parameterization of
E(z) having pT (z) as its top row.

1For an M × 1 FIR causal p(z), deg(p(z)) = ord(p(z)).
2We reserve the notation Wm(z) for order-one completion of PUFBs

to avoid possible confusion.
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2.2. PUFB Completion with Linear Phase Property

It is shown in [16] that the following specialization of the order-
one factorization (1.2) corresponds to M -channel LPPUFBs (M
even): for m = 1, 2, . . . , L, parameterize the M × M

2
unitary

matrix wm as

wm =
1√
2

"
Um

Vm

#
(2.11a)

and the initial unitary matrix E0 as

E0 =
1√
2

"
U0 U0J

V0 −V0J

#
, (2.11b)

where Ui and Vi are M
2
× M

2
orthonormal.

To ensure linear phase property of the completed PUFB, both
(2.11a) and (2.11b) must be satisfied on top of the order-one com-
pletion (2.9). As p(z) is the polyphase vector of a LPPUFB-
admissible scaling filter H0(z), it can be shown that p0 � p(z)|z=1

always takes the following symmetric form:

‖p0‖−1pT
0 =

ˆ
ûT

0 ûT
0 J

˜
, some û0 with ‖û0‖ =

1√
2
,

which should be the 0th row of E0 in (2.11b). Therefore, it is
necessary and sufficient that the matrix U0 of E0 satisfy

eT
0 U0 =

√
2ûT

0 (2.12)

in order for the scaling filter of the resulting PUFB to be as pre-
scribed.

Having constrained E0 by (2.12), we now proceed to parame-
terize wm in such a way that the condition of order-one completion
on ŵL−m+1 in (2.5) holds. As the procedure of order-one com-
pletion calculates ŵL before the others, w1 is determined first by
(2.10). In particular, assuming E0 (or U0 and V0) has been cho-
sen, it must be true that

»
U1

V1

–
=

"
U0 U0J

V0 −V0J

# 2
64

a0
L

‖aL‖ B0
L

a1
L

‖aL‖ B1
L

3
75

| {z }
ŵL

(2.13)

where ŵL has been partitioned into upper and lower M
2

rows as
shown. As aL in ŵL is given, the 0th columns of U1 and V1 are
fixed:

U1e0 = U0

„
a0

L

‖aL‖ +
Ja1

L

‖aL‖
«

(2.14a)

V1e0 = V0

„
a0

L

‖aL‖ − Ja1
L

‖aL‖
«

. (2.14b)

It remains to ensure that columns of BL are orthogonal to both
aL and a0, as is required by order-one completion of E(z) given
pT (z) as the 0th row. The key is to parameterize U1 and V1

appropriately. Observe that any unitary U1 and V1 satisfying
(2.14) will guarantee BT

LaL = 0 as a result of (2.13). To en-
sure BT

La0 = 0, consider augmenting ŵL with a0
‖a0‖ and pre-

multiplying by E0:

E0

2
4 a0

0
‖a0‖

ŵL
a1
0

‖a0‖

3
5 =

1√
2

»
U1 u1

V1 v1

–
(2.15)

where the column vectors u1 and v1 are given by

u1 = U0

„
a0

0

‖a0‖ +
Ja1

0

‖a0‖
«

(2.16a)

v1 = V0

„
a0

0

‖a0‖ − Ja1
0

‖a0‖
«

. (2.16b)

As the LHS of (2.15) is unitary by construction, so is the RHS.
Therefore,"

I 0

0T 1

#
=

1

2

»
U1 u1

V1 v1

–T »
U1 u1

V1 v1

–
(2.17)

from which we have

UT
1 u1 = −VT

1 v1 (2.18)

‖u1‖2 + ‖v1‖2 = 2. (2.19)

Since U1 and V1 are unitary, we conclude that u1 and v1 are
unit-norm.

As the 0th columns of U1 and V1 are fixed as in (2.14), one
can show that the top-most equation in (2.18) is automatically sat-
isfied as a result of (2.14). In particular, it can be shown that

eT
0 UT

1 u1 =
aT

LJa0

‖aL‖‖a0‖ = −eT
0 VT

1 v1.

Therefore, it remains to jointly parameterize U1 and V1 in such a
way that eT

k UT
1 u1 = −eT

k VT
1 v1 for k = 1, 2, . . . , M

2
− 1. This

can be achieved by first choosing V1 subject to (2.14), and then
letting U1 depend on it (or vice versa).

2.2.1. Joint Parameterization of U1 and V1

Suppose V1 has been chosen subject to (2.14). Then the RHS of
(2.18) is a fixed vector with unit norm. This takes away a few de-
grees of freedom from U1, and we are interested in identifying the
remaining degrees of freedom in U1, for which the Householder
matrix is found to be useful. According to (2.18), one can write

u1 = U1(−VT
1 v1) � U1b1.

By assumption, b1 is known and unit-norm, and can be written as
b1 = R[b1] e0. Hence,

u1 = U1R[b1] e0,

which implies that the 0th column of U1R[b1] is u1. Applying
R[u1] to U1R[b1], we arrive at

R[u1]U1R[b1] =

2
4 1

Φ1

3
5

for some (M
2
−1)× (M

2
−1) unitary matrix Φ1 which consists of

all the remaining degrees of freedom for U1 given V1. Therefore,
we have shown that U1 can be parameterized as

U1 = R[u1] · diag(1,Φ1) · R[b1] (2.20)

once V1 has been chosen subject to (2.14). Note that U1 and V1

so obtained guarantee that ŵL given by

ŵL =
1

2

"
U0 U0J

V0 −V0J

#T »
U1

V1

–
(2.21)

is orthonormal and orthogonal to a0 as required, with the 0th col-
umn being exactly aL

‖aL‖ .
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2.2.2. Order Reduction

So far, we have parameterized the initial unitary matrix E0 and
the building block W1(z) or ŴL(z) of the order-one comple-
tion of E(z) as in (2.9), while simultaneously imposing the linear
phase property. The obtained ŴL(z) is then used to reduce the
order of p(z) by one as described in [13]. In particular, p′(z) �
ŴL(z−1)p(z) will be LPPUFB-admissible with order L−1, and
the above procedure is repeated on

p′(z) = a′
0 + a′

1z
−1 + . . . + a′

L−1z
−(L−1)

to obtain U2 and V2, and so on and so forth. Note that once
determined in the initial iteration, E0 will be used throughout the
completion of E(z). The is a complete parameterization of all
LPPUFBs E(z) having pT (z) as its 0th row.

3. DESIGN EXAMPLE

We demonstrate the proposed theory by completing an 8×40 LP-
PUFB given a LPPUFB-admissible scaling filter H0(z) which is
shown in Fig. 2 along with the resulting completion. As a contrast,
using the same admissible H0(z), the completion of a general
PUFB is shown in Fig. 3 based on the order-one completion [13],
for which M = 8, L = 4, and γm = M/2 = 4, m = 1, 2, 3, 4. It
is obvious that the proposed PUFB completion does ensure linear
phase while guaranteeing H0(z) as prescribed.

4. CONCLUSION

We have presented LPPUFB completion given an M -band LPPUFB-
admissible scaling filter H0(z). A complete parameterization of all
such PUFBs is proposed which ensures that the resulting M − 1
bandpass/highpass filters Hi(z) and the given filter H0(z) form
a LPPUFB. Results from completion of a general PUFB are used
in combination with the LP-generating dyadic-based structure, so
that the scaling filter of the resulting LPPUFB is as prescribed and
linear phase of the filter bank is guaranteed. A completion example
is presented.
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