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ABSTRACT

The last decade shows a growing interest in soft decoding tech-
niques. These techniques are almost never applied to existing
nearly perfect codes, but instead other families of concatenated
codes arise with Turbo codes as the main example. The problem
is that for the application of soft decoding, the perfect codes need
to be broken into several smaller component codes. In this pa-
per, the family of Reed-Solomon Codes is considered and using
filterbanks, they are broken into several component codes (one in
each subband). This paper focuses on the construction of such
filterbanks, and gradually evolves towards a critically subsampled
filterbank. The critical subsampling is crucial if the filterbank is
going to be used in a soft decoding setup.

1. INTRODUCTION
In [1], it is shown that many famous nearly perfect codes have a
Toeplitz or quasi-cyclic structure, with Reed-Solomon Codes (RS),
BCH and QR codes as the main examples. These codes can be
convolutionally encoded and classical coding theory then gives us
the tools to decode some of them, albeit without using soft infor-
mation. In the last decade however, there is an emerging trend to-
wards soft error correcting decoding. The convolutional structure
of the codes can seemingly be exploited in BCJR’s algorithm [2],
however the constraint length of many good codes is too large to
get an algorithm that is feasible from a complexity point of view.
Therefore, another family of codes was developed, that can be soft
decoded. Most of these codes are concatenated codes, as intro-
duced by Forney [3], that are built up from several smaller codes,
thereby reducing decoding complexity. These codes are not per-
fect anymore, especially so for smaller block lengths, and Turbo
codes serve as the main example. In this paper, instead of concate-
nating codes, a perfect code (e.g. RS) is broken down by means
of a filterbank. We will only consider RS codes in this paper, as
they are commonly used in many telecommunication systems. In a
first section, it is explained how a filterbank with one tap subband
filters can be built based on Cook Toom’s algorithm. In section 3,
a filterbank is constructed that has non-zero order subband filters
(encoders). Because the filterbank is not critically downsampled,
it can not be used in a soft decoding algorithm, and therefore a crit-
ically downsampled bank is built in section 4. Finally, conclusions
are drawn.

2. COOK-TOOM’S ALGORITHM AS THE BASIS OF A
FILTERBANK IMPLEMENTATION

Straightforwardly computing a product y(z−1) of two polynomi-
als g(z−1) = g0 + g1z

−1 + ... + gL−1z
−L+1 and u(z−1) =

u0 + u1z
−1 + ... + uN−1z

−N+1 requires NL multiplications.

The application of Cook-Toom’s algorithm [4] is known to reduce
the number of multiplications to M ≥ N + L − 1. The pro-
cedure is as follows: First, choose a set of interpolation points
{ri}i=0..M−1 that are the roots of R(z−1) =

QM−1
i=0

`
z−1 − ri

´
.

Evaluate y(ri) = g(ri)u(ri) and perform Lagrange interpolation

y(z−1) =
PM−1

i=0 y(ri)Li(z
−1) with Li(z

−1) =
Q

k �=i
(z−1

−rk)Q
k �=i

(ri−rk)
.

Example 1 As an example, the product of g(z−1) = g0 + g1z
−1

(L = 2) and u(z−1) = u0 + u1z
−1 (N = 2) is calculated. With

the interpolation points chosen to be {0, 1,−1}, y(0) = u0g0,
y(1) = (u0+u1)(g0+g1), y(−1) = (u0−u1)(g0−g1). Finally,
the Lagrange polynomials are calculated L0(z

−1) = (1 − z−2),
L1(z

−1) = (z−1 + z−2)/2, L
−1(z

−1) = (−z−1 + z−2)/2, and
y(z−1) = y(0)L0(z

−1) + y(1)L1(z
−1) + y(−1)L

−1(z
−1) is

reconstructed. �

If the polynomial multiplication is written as y = Gu, then Cook-
Toom’s algorithm can be viewed as a matrix decomposition G =
Cdiag(Bg)A, with G the (N + L − 1) × N Toeplitz matrix
defining the filter g(z−1). A is an M × N matrix with Am,n =
rn

m(n = 0..N − 1), B is an M × L matrix with Bm,l = rl
m(l =

0..L − 1) and C is an (N + L − 1) × M with the ith column
containing the first N + L − 1 coefficients of Li(z

−1).

Example 2 Continuing example 1, we obtain:

y =

2
4g0

g1 g0

g1

3
5

| {z }
G

u =

2
4 1 0 0

0 1
2

− 1
2

−1 1
2

1
2

3
5

| {z }
C

D

2
41 0
1 1
1 −1

3
5

| {z }
A

u (1)

D = diag

 241 0
1 1
1 −1

3
5

| {z }
B

»
g0

g1

–!
(2)

�

Note that the same y can be obtained by multiplying gδ(z
−1) =

z−δg(z−1) and uδ(z
−1) = zδu(z−1). This results in a somewhat

different matrix decomposition where Am,n = rn+δ
m and Bm,l =

rl−δ
m . This will be used at the end of the paper. Unless mentioned

otherwise, δ = 0.
Because of the underlying polynomial arithmetic, Cook-Toom’s

algorithm is also applicable in other fields than the complex field
C, which is important if it is used in a coding context where fi-
nite fields like the Galois Field (GF) are common. Also note
that Cook-Toom’s algorithm is a special case of the Chinese Re-
mainder Theorem [4], and that if the degree of R(z−1) is too low
(M < L+N −1), the convolution modulo R(z−1) is calculated.
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Fig. 1. Filterbank from a matrix decomposition point of view. The
overlap-add version resp. overlap-save is shown in the upper resp.
lower part of the figure. The phase φ of the downsamplers is also
indicated.

The next theorem shows how a filterbank can be constructed
starting from the above matrix decomposition.

Theorem 1 Given is a CDA decomposition based on Cook-Toom
implementing an N by L convolution with g(z−1) using M ≥
L + N − 1 roots. Now, construct a multirate filterbank with M
bands, indexed by m, and subsampled by N . The analysis re-
spectively synthesis filters of band m = 0..M − 1 are defined as
follows:

hm(z−1) =

N−1X
k=0

Am,N−1−kz−k (3)

gm(z−1) =

L+N−2X
k=0

Ck,mz−k (4)

The diagonal elements of D reside in the subband filters. This fil-
terbank implements an overlap-add convolution with z−N+1g(z−1).

The overlap-add scheme is widely described in literature [5] [6].
The filterbank splits a large data-block in small blocks of length N .
For each block, the convolution will be calculated, based on the
decomposition CDA. This is illustrated in the upper part of Fig-
ure 1, where the convolutions performed in the analysis bank are
represented by a multiplication with A. In the subbands, the mul-
tiplication with D is performed and finally, in the synthesis bank,
the overlapping parts of length L − 1 are added, which explains
the name. One can see that from a matrix decomposition point of
view, the large Toeplitz matrix is broken into smaller, tall Toeplitz
matrices that are each decomposed using Cook-Toom’s algorithm.

Note: One can also apply signal flow transposition to get the
overlap-save variant. Now, the large Toeplitz matrix is broken into
fat Toeplitz matrices that are equal to JGT J with J the exchange
matrix (ones on the anti-diagonal). See also the lower part of Fig-
ure 1. The CDA decomposition is transposed, and is left and
right-multiplied with J. The resulting (overlap-save) filterbank is
exactly the same as its overlap add equivalent, but with synthesis
and analysis bank swapped.

Example 3 In this example, the RS(15, 10, 6) code [7] is in-
troduced, which is also used throughout the rest of this paper.
This linear code in GF (24)1 encodes a data word u(z−1) of 10

1The primitive polynomial is x4 + x + 1, with α = 2 a primitive 15th
root of unity. (Decimal notation is used to represent elements of a Galois
Field)
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Fig. 2. overlap-add filterbank (L = 6, M = 8, N = 3) for the
RS(15, 10, 6) code described in example 3. A dataword of 10
symbols padded with zeros is fed in the filterbank, resulting in a
codeword of 15 symbols. Because there are no filters present in
the subbands, this bank has no error correcting capacity.

symbols into a codeword y(z−1) of 15 symbols by filtering with
gRS(z−1) =

Q5
k=0 (z−1 − αk) (L = 6). L = 6 is also called

the dimension D of the code. Let us choose the downsampling
factor N = 3, which then also corresponds to the block length N ;
Now, take M = 8 ≥ L+N − 1. As roots of R(z−1), we pick the
first 6 elements of the Galois Field: ri = i, i = 0..5. The result-
ing overlap-add filterbank is shown in Figure 2. Note that every
codeword y(z−1) belongs to a linear subspace SRS spanned by
z−kgRS(z−1), k = 0..9, and that the coefficients of these poly-
nomials form the columns of GRS, which is called the generator
matrix of the code. �

Notice that one large convolution is now broken into 8 pointwise
multiplications (zero-order filters) in the subbands, which however
themselves do not have error correcting capacity. I.e., non-zero
order subband filters are needed that work as a convolutional code
and that are able to correct errors by introducing redundancy, in
this case by zero padding the input. In the next section, a filterbank
with component codes in the subbands will be constructed.

3. FILTERBANK WITH COMPONENT CODES IN
SUBBANDS

Imagine now that the elements g0, ..., gL−1 of the vector g are a
function of z−N , such that gl(z

−N) =
PK−1

k=0 gl[k]z−kN . Fol-
lowing Cook-Toom’s decomposition, the diagonal elements of D

will also be functions of z−N , resulting in filters d0(z
−1), ...,

dL−1(z
−1) in the subbands. Relying on the superposition princi-

ple (see [8] for a proof), it can be shown that the filterbank imple-
ments a convolution with g(z−1) = z−N+1

PL−1
l=0 z−lgl(z

−N).
This can also be written in matrix notation as follows2:

g(z−1) =
ˆ
z−(0:1:L−1)

˜
·2

6664
g0[0] g0[1] . . . g0[K − 1]
g1[0] g1[1] . . . g1[K − 1]

...
...

. . .
...

gL−1[0] gL−1[1] . . . gL−1[K − 1]

3
7775

| {z }
Γ

·
ˆ
z−(0:1:K−1)N

˜T

(5)

2The following Matlab notation is used za:b:c =
[za

z
a+b

z
a+2b

. . . z
c], if b is not given, b = 1 is assumed
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Fig. 3. Matrix decomposition for the RS(15,10,6) filterbank in
example 4. The parameters are K = 2, L = N = 3, M = 5,
φ = 0.
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Fig. 4. Filterbank with component codes in each subband for the
RS(15,10,6). (example 4)

Note that K = 1 results in the filterbank described in section 2.
Note also that not every filter can be realized if L < N (leading
to missing powers of z−1 in equation 5), therefore we impose the
constraint L ≥ N .

Example 4 We obtain a realization of RS(15,10,6) by making the
following consecutive choices. Starting with N = 3, we choose
the smallest possible values for L(L ≥ N) and M(M ≥ L +
N − 1), i.e. L = 3 and M = 5. The 5 first elements of the GF:
{0..4} are used as roots of R(z−1). Knowing that the filter gRS

has 6 coefficients, the matrix Γ is 3× 2 (K = 2) as shown below.

ˆ
1 z−1 z−2

˜ 24 1 14
3 3
14 1

3
5

| {z }
Γ

»
1

z−3

–
(6)

The resulting filterbank can be found in Figure 4 and generates
the same code subspace SRS as in Example 3. The correspond-
ing matrix factorization is shown in Figure 3 where the Toeplitz
generator matrix GRS is shown. �

Remark that if L = N , which is the case in the previous exam-
ple, this filterbank can be found from the polyphase components
of u, g and y by applying an aperiodic convolution algorithm as
described in [8].

As a second remark, we note that for M = 5, an element of
order 5 exists in GF (24), namely β = α3. This element generates
a multiplicative subgroup β0 = 1, β1 = 8, β2 = 12, β3 = 10,
β4 = 15, (β5 = 1) that can be used as the roots of R(z−1).
The filterbank so obtained is shown in Figure 5. Looking into
more detail, the analysis and synthesis bank calculate the Mattson-
Solomon Polynomial [7] of their inputs, also known as the DFT in
the GF. As will be seen further, this property is very important. The
filterbank in Figure 5 can thus be seen as the (GF) counterpart of
the STFT bank, which was introduced by [9] [5].

However, the aim of this paper is not to simplify the encoding
for the RS code (which is not overly complex). We are aiming
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Fig. 5. STFT-like filterbank based on the Mattson-Solomon Poly-
nomial

at simplifying the decoding, and for this purpose, the filterbank
has to be run in reverse order, i.e. the subband samples must be
found starting from the codeword (the output of the filterbank).
Because of the fact that the bank is not critically downsampled,
the synthesis bank implements a kind of projection from a high
dimensional space to a low(er) dimensional one, and hence the
subband samples, even in the error free case can never be found.
In the following section, this problem is tackled.

4. CRITICALLY DOWNSAMPLED FILTERBANK
In this section, a critically downsampled filterbank is built for the
family of RS codes. In order to achieve this goal, the constraint
M ≥ L + N − 1 must be violated (M = N), resulting in a
filterbank that does not implement a convolution with gRS(z−1)
but a convolution modulo R(z−1). We will try to obtain a circu-
lant convolution, for reasons that will become clear, and therefore
choose R(z−1) = 1 + z−M . A decomposition of R(z−1) in
first degree polynomials only exists if M divides Q = 2q − 1.
In that case, a subgroup generated by β = αQ/M can be found
and R(z−1) = 1 + z−M =

QM−1
k=0 (z−1 + βk) (Fermat’s the-

orem). Hence, the resulting filterbank is based on the Mattson-
Solomon Polynomial. In the following, a Γ is determined in such a
way that the code is still a RS code, however the set of codewords
and thus the subspace will be different from the one generated by
GRS. Therefore, properties concerning the code generated by the
filterbank are indicated with a superscript IL (Interleaved). Every
codeword yIL(z−1) obtained as the output of this critically down-
sampled (L = M = N) bank can be written as GIL

RSu. Therefore,
the code subspace is spanned by the following set of polynomials:

SIL
RS :

ˆ
z−(l:l+L−1)

˜
Γ
ˆ
z−(k:k+K−1)N

˜T
mod(1 + z−N) (7)

with k = 0 : K−1, l = 0 : L−1. Stacking the polyphase compo-
nents (thereby de-interleaving the basis vectors and thus keeping
the ’perfect’ distance properties of the RS code) gives:ˆ

z−(l:1:l+L−1)Q/N
˜
Γ
ˆ
z−(k:1:k+K−1)

˜T
mod(1 + z−Q) (8)

with k = 0 : K − 1, l = 0 : L − 1. Now, a Γ can be found
such that this set of basis vectors generates the original subspace
SRS defined by GRS. For k = l = 0, a unique Γ can be obtained
with only D nonzero elements, including one chosen constant (RS
code with dimension D) such that this codeword is in the subspace
generated by GRS. Furthermore, note that for k and/or l nonzero,
a shifted version of this codeword mod(1 + z−Q) is obtained, and
therefore is also a codeword (RS code is a cyclic code). Finally,
note that y is obtained using a linear combination of these code-
words (RS code is a linear code) and that the critically downsam-
pled filterbank produces the same codewords, but interleaved.

Example 5 To build a critically downsampled filterbank for the
RS(15,10,6), let K = 2 and L = M = N = 5. We choose
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Fig. 6. Matrix decomposition for the critically downsampled (L =
M = N = 5, φ = 4) filterbank for RS(15, 10, 6) code, found in
example 5, that can be used for soft decoding.
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Fig. 7. Critically downsampled (L = M = N = 5, φ = 4)
filterbank for RS(15, 10, 6) code, found in example 5

the 2 last rows of Γ to be 0, and Γ0,0 to be one. The remaining 5
elements are calculated so that y(z−1) is in the subspace generated
by GRS. This gives the unique codeword

y(z
−1) =

ˆ
z−0 z−3 z−6 z−9 z−12

˜
2
6664

1 6
14 14
6 1
0 0
0 0

3
7775
»
z−0

z−1

–
(9)

Note that every shifted version z−k−lQ/N , for k = 0 : 1 and
l = 0 : 4 is also a codeword and belongs to SRS . Interleaving this
codeword, we obtain

yIL(z−1) =
ˆ
z−0 z−1 z−2 z−3 z−4

˜
2
6664

1 6
14 14
6 1
0 0
0 0

3
7775
»
z−0

z−5

–
(10)

Shifting this codeword as described by equation 8 results in the
GIL

RS in Figure 6. The corresponding filterbank is shown in Fig-
ure 7. The 2 decompositions based on Cook-Toom’s algorithm
used to construct this filterbank are shown below:

2
6664

1 0 0 6 14

14 1 0 0 6

6 14 1 0 0

0 6 14 1 0

0 0 6 14 1

3
7775

| {z }
G[0]

=

2
6664

1 1 1 1 1

1 15 10 12 8
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3
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| {z }
IF

2
6664
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3
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| {z }
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2
6664

1 1 1 1 1

1 8 12 10 15
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3
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| {z }
F

2
6664

6 0 0 1 14

14 6 0 0 1

1 14 6 0 0

0 1 14 6 0

0 0 1 14 6

3
7775

| {z }
G[1]

=

2
6664

1 1 1 1 1

1 15 10 12 8

1 10 8 15 12

1 12 15 8 10

1 8 12 10 15

3
7775

| {z }
IF

2
6664

9 0 0 0 0

0 3 0 0 0

0 0 13 0 0

0 0 0 8 0

0 0 0 0 9

3
7775

| {z }
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2
6664

1 1 1 1 1
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1 10 8 15 12
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3
7775

| {z }
F

D[0] = diag(FΓ(:, 0))

D[1] = diag(FΓ(:, 1))
�

Remark that Solomon discovered a circulant structure in the RS
codes [1], however this differs from the block Toeplitz structure
with circulant blocks derived here which is indeed a filterbank-
like structure. As a final remark, note that the overlap-add variant

equals the overlap-save filterbank, if δ = 1 in Cook-Toom’s algo-
rithm. Doing so, the DFT matrix F of the analysis bank is circu-
larly shifted one step to the right resulting in C = JAT (See also
Figure 1). Then, signal flow transposition on this filterbank gives
us the same filterbank.

5. CONCLUSION
In this paper, it is explained how a critically subsampled filterbank
is built that breaks down a RS code into convolutional component
codes. In a first step, overlap-add and overlap-save filterbanks are
reviewed, that operate in the GF based on Cook-Toom’s algorithm.
These filterbanks have zero order tap filters in their subbands. To
allow error correction, in a second step, a filterbank is built that has
non-zero order subband filters using the superposition principle.
The equivalent of the STFT bank is presented, making use of the
Mattson-Solomon polynomial. However, the latter cannot be used
for decoding as it is not critically downsampled. In a third step,
it is explained how to build a critically downsampled filterbank,
which is remarkable noting that a critically downsampled bank can
never perform linear filtering operations. It is again based on the
Mattson-Solomon polynomial or DFT in the GF and on the fact
that it diagonalizes a circulant matrix. In an upcoming paper, it
is explained how the component codes are working together in an
iterative algorithm to do soft decoding.
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