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ABSTRACT

The purpose of this paper is twofold: one is to establish a frame-
work for general biorthogonal filter banks (BOFBs) with struc-
tural regularity; the other is to identify the connection between the
general structure used here and the one commonly used for linear-
phase biorthogonal filter banks (a.k.a. generalized lapped biortho-
gonal transform or GLBT). The latter also leads naturally to the
same reduced number of free parameters as GLBT. We first re-
visit a minimal structure of BOFBs using order-one dyadic-based
building blocks, by which BOFBs with length constraint can be de-
signed. Conditions for filter bank regularity on the dyadic-based
structure are derived and specialized to the case of GLBT. Design
examples are presented.

1. INTRODUCTION

Notations: Bold-faced characters denote either a column vector
or a matrix. For i = 0, . . . , M − 1, ei is the ith unit vector of
C

M . 1M and 0M are the M -vectors of all ones and all zeros,
respectively, and IM and JM denote the M × M identity and
reverse identity matrices. ρ(A) denotes the rank of A.

Recently, M -channel filter banks have found several applica-
tions in signal processing [1–5]. Biorthogonal filter banks (BOFBs),
in particular, have been employed as a transform coder in image
compression application where their coding performances have
shown to be a significant improvement over other traditional trans-
forms [6, 7]. In addition to its frequency selectivity and coding
gain, an optimized BOFB for the purpose of image coding usu-
ally has two other properties imposed: (i) linear phase (symmetry
and anti-symmetry of the filters’ impulse responses) and (ii) regu-
larity. In [6], a modular structure for parameterizing BOFBs with
linear phase is presented, in which linear phase and perfect recon-
struction (PR) properties are structurally imposed. It is a modified
version of that proposed for paraunitary filter banks (PUFBs) [8].
In [7], the structure is further extended in order to additionally im-
pose regularity on the transform.

Regularity is fundamental to the filter bank theory and is closely
related to the smoothness of the corresponding wavelet basis [1].
An M -channel filter bank is said to be (Ka, Ks)-regular if the
analysis and synthesis lowpass filters H0(z) and F0(z) have a zero
of multiplicity Ka and Ks, respectively, at the M th roots of unity
ej2πm/M for m = 1, . . . , M − 1, which is equivalent to

dn

dzn

nˆ
z1−M . . . z−1 1

˜
R(zM )

o˛̨̨
z=1

=
ˆ

dn 0 . . . 0
˜
(1.1a)

dm

dzm

nˆ
1 z−1 . . . z1−M

˜
ET (zM )

o˛̨̨
z=1

=
ˆ

cm 0 . . . 0 (̃1.1b)

for some cm, dn �= 0, m = 0, 1, . . . , Ks −1, n = 0, 1, . . . , Ka −
1. This states that the multiplicity of zeros at DC of the analysis
(synthesis) bandpass/highpass filters is equal to that of the synthe-
sis (analysis) lowpass filter [9, 10]. Regular filter banks are de-
sirable to many applications such as signal interpolation and data
compression [1–5].

For a causal M × M polyphase matrix E(z), the McMillan
degree and the order are two distinct but important concepts. The
(McMillan) degree of E(z) refers to the minimum number of delay
elements required for its implementation. A minimal structure of
E(z) is one which uses this minimum number of delay elements
in it; as a contrast, the order of E(z) refers to the highest power of
z−1 in E(z). As a result, the degree is no less than the order.

In this paper, we consider the class of causal FIR M -band
biorthogonal filter banks of order L spanned by

E(z) = WL(z) . . .W1(z)E0 (1.2)

with an FIR inverse, where E0 is non-singular and each Wm(z)
is the first-order biorthogonal (dyadic-based) building block given
by

Wm(z) = I − UmV†
m + z−1UmV†

m (1.3)

where the M × γm parameter matrices Um and Vm satisfy

V†
mUm =

2
666664

1 × × . . . ×
0 1 × . . . ×
0 0 1 . . . ×
...

...
...

. . .
...

0 0 0 . . . 1

3
777775

γm×γm

� ∆m (1.4)

for some integer 1 ≤ γm ≤ M , where × indicates possibly
nonzero elements. This is a generalization of the paraunitary order-
one factorization given in [11] where Um = Vm, and has been
used for factoring the BOLT [12].

Remarks:

1. Since ρ(V†
mUm) = γm, the McMillan degree of Wm(z)

as in (1.3) is γm.

2. The construction in (1.2) completely spans all causal FIR
BOFBs having FIR inverses, up to a factor unimodular in
z−1 [12]. The spanned analysis filters have filter lengths no
greater than M(L + 1), and the McMillan degree of E(z)
ranges from L to ML where L is the order of the FB.

3. A causal Type-II synthesis polyphase matrix R(z) can be

R(z) = z−LE−1
0 W−1

1 (z) . . .W−1
L (z). (1.5)
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As a result of the possibly nonzero off-diagonal elements
in (1.4), the synthesis bank can have filter lengths differ-
ent from M(L + 1). In fact, the lengths of the synthe-
sis filters are bounded by M(µ + 1) from above, where
µ =

PL
m=1 γm is the McMillan degree of E(z). The

choice ∆m = Iγm results in equal filter lengths for the
analysis and synthesis banks.

2. REGULAR BIORTHOGONAL FILTER BANKS

2.1. (1, 1)-Regular BOFBs

Regularity can be structurally imposed on the standard dyadic form
(1.2). To demonstrate this point, we consider the design of (1, 1)-
regular BOFBs. In this case, it is true that E(zM )eM(z)|z=1 =
E01M = c0e0 and RT (zM )JeM(z)|z=1 = E−T

0 1M = d0e0,

where the delay chain eM (z) =
ˆ

1 z−1 . . . z1−M
˜T

. This
implies that the entries of the top row of E0 (and E−T

0 ) be equal.
To parameterize such non-singular matrices having identical

entries in the top row, a method is proposed in [7]. In particular,
for any non-singular E0, one can write

E0 = RDLP (2.1)

where R = I + e0

ˆ
0 rT

˜
and L = I +

ˆ
0 �T

˜T
eT
0 with

r =
ˆ

r1 r2 . . . rM−1

˜T
and � =

ˆ
�1 �2 . . . �M−1

˜T
,

D =

»
α 0T

0 Ē0

–
is non-singular, and P is obtained by exchanging

the 0th row and some other one of I. By construction, R and L
correspond to lifting steps with lifting coefficients ri and �i.

It can be shown that the one-regular conditions for the synthe-
sis and analysis banks simplify to

Ks ≥ 1 =⇒ ˆ
1 �1+1 . . . �M−1+1

˜T
=

c0

α
e0, (2.2a)

Ka ≥ 1 =⇒ D−T

 
1M −

M−1X
i=1

�ie0

!
= d0

»
1
r

–
, (2.2b)

respectively. (1, 1)-regular BOFBs are furnished by the following
theorem, whose proof is left as an exercise.

Theorem 1 M -band BOFBs as in (1.2) and (1.5) are (1, 1)-regular
if and only if

� = −1M−1, c0 = α, c0d0 = M, and

r =
1

d0
Ē−T

0 1M−1,

where E0 is parameterized as in (2.1).

Example 1: In this example, a (1, 1)-regular, 8-channel, 16-tap
BOFB is designed using the proposed theory. Related parameters
are: L = 1, γ1 = 4, and ∆1 = I for simplicity. Each non-
singular matrix is parameterized using the QR factorization [13].
Fig. 1 shows the resulting design with coding gain 9.6226dB. Note
that BOFBs with better performance can be obtained if nonzero
off-diagonal entries of ∆1 are permitted as in (1.4).
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Fig. 1. (1,1)-reg. 8×16 BOFB: impulse and frequency responses.

2.2. (1, 2)-Regular BOFBs

Due to limited space, we summarize the result for two-regular syn-
thesis bank below. That for analysis bank can be similarly derived
and is skipped.

Theorem 2 M -band BOFBs as in (1.2) and (1.5) are (1, 2)-regular
if and only if (2.2a) holds and

−c0M
LX

m=1

wm − E0bM = c1e0, c1 �= 0 (2.3a)

where wm = UmV†
me0 and bM =

ˆ
0 1 . . . M−1

˜T
. If P

in (2.1) is chosen to be I, Eqn. (2.3a) further simplifies to

Ē0b̄M = −c0M

LX
m=1

w̄m (2.3b)

where wm �
ˆ

wm
0 w̄T

M

˜T
and bM �

ˆ
0 b̄T

M

˜T
.

Remarks: As Ka = 1, Ē0 is not constrained in any way other
than non-singularity. Hence in the case of (2.3b), assuming all wm

are known, Ē0 can be parameterized similarly as in [7, Thm. 3] so
that (2.3b) is satisfied.

Example 2: Using the above thoerem with (2.3b), we design
a (1, 2)-regular BOFB of eight channels (M = 8) and length 16
(L = 1). Again, we choose γ1 = 4 and ∆1 = I for simplic-
ity. Fig. 2 shows the resulting design with coding gain 9.6031dB.
Observe the double zeros of F0(z) at the aliasing frequencies, im-
plying a two-regular synthesis bank. The synthesis basis is thus
smoother than the analysis basis.

3. LINEAR-PHASE BIORTHOGONAL FILTER BANKS

An M -channel (M even) linear-phase biorthogonal filter bank (BOLP)
of order L can be factored as follows [6, 8]

E(z) = GL(z)GL−1(z) . . .G1(z)ELP
0 (3.1)

where Gm(z) = ΓmWΛ(z)W is the BOLP building block, and
the initial non-singular matrix ELP

0 = Γ0ĨWĨ, with

Γm =

»
Um 0M/2

0M/2 Vm

–
, W =

1√
2

»
IM/2 IM/2

IM/2 −IM/2

–
,

Λ(z) =

"
IM/2 0M/2

0M/2 z−1IM/2

#
, and Ĩ =

»
IM/2 0M/2

0M/2 JM/2

–
.
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Fig. 2. (1,2)-reg. 8×16 BOFB: impulse and frequency responses,
along with zero plots of H0(z) and F0(z), and the wavelet bases.

The Um and Vm are M/2×M/2 non-singular. Fig. 3 shows the
lattice structure of an eight-channel BOLP of order L.

3.1. BOLP in Standard Dyadic Form (1.2)

By construction, each FIR LP building block Gm(z) is causal of
order one and has an anticausal inverse. Namely, it is a BOLT [12],
and it follows that one can always express Gm(z) in terms of the
first-order BO building block Wm(z), with a suitable choice of
parameter matrices Um and Vm (this in fact is a rather deep result).
In particular, one can show that (with subscripts M/2 dropped for
simplicity)

GL(z) = ΓL

(
I +

(z−1−1)

2

"
I −I

−I I

#)

=

(
I +

(z−1−1)

2
ΓL

"
I −I

−I I

#
Γ−1

L

)
ΓL

=

(
I +

(z−1−1)

2

"
I −ULV−1

L

−VLU−1
L I

#)
ΓL

� WL(z)ΓL, (3.2)

where the first-order BO building block WL(z) is given by

WL(z) = I + (z−1−1)
1

2

"
I −ULV−1

L

−VLU−1
L I

#
.

The trailing factor ΓL is absorbed by GL−1(z) so that

GL(z)GL−1(z) = WL(z)

»
UL 0
0 VL

–
GL−1(z)

= WL(z)

»
ŨL−1 0

0 ṼL−1

–
WΛ(z)W

= WL(z)WL−1(z)

»
ŨL−1 0

0 ṼL−1

–
,

where the relation in (3.2) has been employed in the last equality
with Ũm � ULUL−1 . . .Um and Ṽm � VLVL−1 . . .Vm,
and Wm(z) is given by

Wm(z) = I + (z−1−1)
1

2

"
I −ŨmṼ−1

m

−ṼmŨ−1
m I

#
. (3.3)

We can carry out the same procedure until arriving at

E(z) = WL(z) . . .W1(z)

"
Ũ0 0

0 Ṽ0

#
ĨWĨ

| {z }
E0

, (3.4)

which is in the standard dyadic form (1.2).

3.2. LP-Generating Standard Dyadic Structure

Consider the first-order BO building block as in (3.3). The cor-
responding parameter matrices Um and Vm can be chosen to be

Um =
1√
2

"
I

−ṼmŨ−1
m

#
Sm, (3.5a)

V†
m =

S−1
m√
2

ˆ
I −(ṼmŨ−1

m )−1
˜

(3.5b)

for any γm × γm non-singular matrix Sm. Note that for the LP
case, γm ≡ M

2
and ∆m ≡ I for all m. Along with the initial non-

singular matrix E0 = diag{Ũ0, Ṽ0} ĨWĨ, the choice in (3.5)
guarantees that the standard dyadic form (1.2) preserves the linear
phase property.

3.3. Degrees of Freedom

The standard dyadic form (1.2) provides a new parameterization
of BOLP by defining

Û0 = Ũ0, V̂0 = Ṽ0, and

V̂m = −ṼmŨ−1
m , m = 1, 2, . . . , L,

and forming the parameter matrices according to

Um =
1√
2

"
I

V̂m

#
, V†

m =
1√
2

ˆ
I V̂−1

m

˜
. (3.6)

Namely, there are in total L + 2 non-singular matrices Û0 and V̂i

of size M/2 × M/2, consisting of free parameter. This is less
than 2L+2 as in (3.1) and is as efficient as the reduced-parameter
structure for BOLPs established in [10,11]. Note that starting with
a set of (original) parameter matrices Um and Vm as in (3.1), one
can always obtain a corresponding smaller set of matrices Û0 and
V̂m. Hence, the completeness of the structure is not affected by
the proposed parameterization.
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Fig. 3. Lattice structure for biorthogonal LP lapped transform.

Theorem 3 The standard dyadic form (1.2) spans all M -band
GLBTs (M even) if it is parameterized by non-singular matrices
Û0 and V̂i of size M

2
× M

2
in such a way that

E0 = diag{Û0, V̂0} ĨWĨ =
1√
2

"
Û0 Û0J

V̂0J −V̂0

#
(3.7)

and the parameter matrices Um and Vm of Wm(z) are as given
in (3.6) in terms of V̂m.

4. REGULAR LINEAR-PHASE BIORTHOGONAL
FILTER BANKS

As we can now parameterize any GLBT using the standard dyadic
form (1.2), the regularity conditions on the general dyadic-based
BO structure without the LP constraint can be applied. In particu-
lar, we will see how they simplify under the LP assumption.

Suppose R(z) is at least one-regular. It follows that E01M =
c0e0 for some c0 �= 0. Substituting (3.7) gives

c0e0 =
1√
2

"
Û0 Û0J

V̂0J −V̂0

#"
1

1

#
=

√
2

"
Û01

0

#
,

or c0√
2
e0 = Û01M

2
, which is equivalent to the property that the

elements of the top row of Û0 are equal. Similarly, if E(z) is at
least one-regular, one arrives at d0√

2
e0 = Û−T

0 1M
2

. The technique
employed in Sec. 2 applies here.

Now, suppose R(z) is at least two-regular. Plugging (3.6) into
(2.3a) results in

− c0M

2

LX
m=1

"
e0

V̂me0

#
− E0bM = c1

»
e0

0

–
(4.1)

where e0 ∈ R
M/2. Now using (3.7) and noting that bM =h

bT
M
2

bT
M
2

+
`

M
2

´
1T

M
2

iT

and bM
2

+ JbM
2

=
`

M
2
− 1
´
1M

2
,

we have

E0bM=
1√
2

2
64 Û0

“
bM

2
+ JbM

2
+ M

2
1M

2

”
V̂0

“
JbM

2
− bM

2
− M

2
1M

2

”
3
75=

"
M−1

2
c0e0

×

#

which indicates that the first M
2

equations in (4.1) are automati-
cally satisfied, and (4.1) reduces to

LX
m=1

V̂me0 =

√
2

c0M

ˆ −V̂0J V̂0

˜
bM , (4.2)

which is a condition on the 0th columns of the V̂m. In essence, we
have obtained an alternative characterization of structurally regular
synthesis bank using dyadic-based structures, with an equivalent
but simpler condition (4.2) to impose (c.f. [7, Cond. A02]). Due to
limited space, we skip analysis bank of higher regularity, but the
result can be similarly derived.

5. CONCLUSION

Using a dyadic-based structure which is minimal, we have estab-
lished the framework for structurally regular BOFBs with length
constraint, and identified the connection between the dyadic-based
structure and the lattice structure commonly used for the design
and implementation of GLBT. A reduced-parameter representa-
tion of the GLBT follows naturally. Regularity conditions on the
dyadic-based structure are presented and specialized so as to ac-
commodate linear phase. Design examples are given.
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