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ABSTRACT
Because of their interactive nature, multimedia streams must
be sent over UDP and suitable countermeasures for mini-
mizing the effect of data loss have to be taken. Among the
various proposed techniques, coding with redundant filter
banks has been proposed as a mean to add robustness to
the data stream. In order to avoid the computationally ex-
pensive matrix inversion necessary for signal reconstruction
in presence of packet loss, an iterative reconstruction algo-
rithm can be used. Unfortunately, the classical algorithm for
iterative reconstruction does not necessarily converge if too
many coefficients are lost. In this paper we propose a mod-
ified version which converges even in the case of excessive
losses.

1. INTRODUCTION

Because of their interactive nature, multimedia streams must
be sent over UDP and suitable countermeasures for mini-
mizing the effect of data loss have to be taken. Most of
the proposed approaches make the stream more robust by
adding some redundancy to it.

An effective way to achieve such a goal in coding ap-
plications is to use a redundant filter bank. The problem of
reconstructing the original signal from the filter bank out-
put can be easily solved by recognizing that the action of
an oversampled filter bank can be interpreted in terms of
frames [1]. More precisely, general theorems of frame the-
ory claim that the original signal can be obtained by lin-
early combining a set of suitable signals (known as the dual
frame) using as coefficients the outputs of the analysis filter
bank. It can be shown that the dual frame corresponding to
an oversampled filter bank has a filter bank structure [1].

If some coefficient is lost, one can reconstruct the signal
by using the dual of the “subframe” obtained by deleting
from the original frame the functions corresponding to the
lost samples. However, the construction of the new dual
frame requires a computationally expensive matrix inver-
sion. Because of this, an iterative algorithm for frame re-
construction has been proposed in [2]. Unfortunately, the

algorithm of [2], converges only if the received coefficients
still correspond to analysis with a complete set of functions,
but such an hypothesis is not necessarily satisfied in the case
of random losses.

In this paper we propose a modified version of the algo-
rithm of [2] which converges even if the subframe is not a
frame anymore. It is shown that the modified version con-
verges with the same velocity of the original one.

2. OVERSAMPLED FILTER BANKS AND FRAMES

In the following we will consider the notation for 1D sig-
nals, but the results are also valid for multidimensional sig-
nals and filterbanks. A possible way to achieve some re-
silience against packet losses is to code signal x by means
of a redundant filter bank

yc
�
n � � ∑

m � � x � m � hc
�
Mn 	 m� (1)

where M is the sampling factor, hc, c � 1 
 � � � 
 N, is the im-
pulse response of the c-th channel and N � M is the num-
ber of channels. One possible way to obtain a redundant
filter bank is by oversampling, but other designs are cer-
tainly possible [1]. Eq. (1) can be interpreted as a scalar
product between the input sequence and the analysis func-
tion φk � h �c �

Mn 	 � � , with k � c � nN. In operator form,

we can write yk � � Fx � k
∆� � x 
 φk � . In the case of a redun-

dant filter bank, functions φk constitute a frame, i.e., the set

Φ �� � φk � k � � satisfies

A � x � 2 � ∑
k � �

� � x 
 φk � � 2 � B � x � 2 
 (2)

for some constants A 
 B � 0 called the frame bounds. In
particular, the first inequality in (2) guaranties stable recon-
struction of the input from yk. The problem of the recon-
struction of x from yk is the infinite-dimensional counterpart
of an overdetermined linear system y � Fx where F is a full
rank N � M matrix with N � M. In the filter bank context,
the counterparts of y, x and F are, respectively, the sequence
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of received coefficients ŷc
�
n � , the input signal x and the lin-

ear map F associated with the analysis filter bank. As a
matter of fact, for finite length inputs and FIR filters, the
case we will consider in the following, one can express the
synthesis filter bank operation as a finite dimension matrix-
vector product [3]. It is well-known that the solution x̂ of
an overdetermined system of equations can be obtained as
x̂ � F†y, where F† � � FtF � � 1Ft is the pseudo-inverse of F
[4]. Such a solution has the property to be the minimum
norm input best describing y, i.e.,

� �
Fx � y

� �
is minimum

even if y does not belong to the space Im � F � generated by
the rows of matrix F, because, for instance, of quantization
of the coefficients. In operator form, the general reconstruc-
tion formula uses the pseudo-inverse F† of F , namely

x̂ � F†ŷ � � F � F � � 1F � ŷ � � F � F � � 1 ∑
k � 
 φkŷk � ∑

k � 
 φ̃kŷk �
(3)

The reconstructed signal is obtained by linearly combining,
with coefficients ŷk, functions φ̃k � � F � F � � 1φk, which are
the infinite-dimensional counterpart of the columns of F†.

Set
�
Φ �� 
 φ̃k � k � 
 is called the dual frame of Φ �� 
 φk � k � 
 .

3. PROBLEM STATEMENT AND SOLUTION

In this section, in view of the fact that we are concerned
with the derivation of an iterative algorithm for the recon-
struction of the input given the received coefficients, we will
implicitly assume that the input has finite length and that
the analysis filters are FIR, so that the operator F is a fi-
nite dimension matrix. In [2], a recursive algorithm for the
computation of the pseudo-inverse solution (3) is presented.

Starting from a frame Φ �� 
 φk � k � 
 with bounds A � B, one
can write

x � 2
A � B

F � Fx �
�
Id � 2

A � B
F � F � x � 2

A � B
F � Fx � Rx �

It is possible to show that
� �
R

� � �
1 [2], so that we have

x � � Id � R � � 1 2
A � B

F � Fx � 2
A � B ∑

k

RkF � Fx �

In general, for a generic ŷ resulting for instance from quan-
tization of the received coefficients y � Fx, it is immediate
to verify that [2]

x̂ � 2
A � B

� Id � R � � 1F � ŷ � lim
N � � ∞

2
A � B

N

∑
k 	 0

RkF � ŷ (4)

is the pseudo-inverse solution (3). By simple manipulations
of (4), one can express

x̂N � 2
A � B

N

∑
k 	 0

RkF � ŷ

as a function of x̂N � 1 and derive an iterative algorithm.
In Multiple Description coding, some of the coefficients

in ŷ can be lost during transmission. Denoting by ŷI the
set of received coefficients, we can pretend that they are de-
rived from the analysis of the input x with the operator FI ,
obtained by deleting the rows of matrix F with indices in
the complement of set I. It may happen, however, that the
rows of the resulting matrix FI are not a frame anymore,
i.e., that the rows span a proper subspace of the input space.
In this case, the pseudo-inverse solution requires to find a
minimum norm input vector x̂, belonging to the space gen-
erated by the rows of FI , such that

� �
FIx � ŷI

� �
is minimum.

It is easy to show, by direct calculations, that this solution
can be obtained as

x̂ � 2
A � B

� Id � R � †F �I ŷ � R �
�
Id � 2

A � B
F �I FI � � (5)

Note that, in the above expression, constants A and B can
be those of the original frame, before row cancellation in
F . It is not difficult to show that

� �
R

� � �
1 if the rows of FI

still constitute a frame, possibly with bounds different from
A and B, while

� �
R

� � � 1 in general. In particular, if the rows
of FI span a proper subset SI of the input space, we have
Rx � x for any input belonging to the space orthogonal to
SI , and

� �
R

� � � 1. Unfortunately, � Id � R � is not invertible
in this case and we cannot use the expansion (4). In the
following, we present the main contribution of the paper,
i.e., an iterative algorithm for the computation of � Id � R � †

in (5), when
� �
R

� � � 1.

4. AN ITERATIVE ALGORITHM FOR � I � R � †

In this section we show an algorithm for computing � Id � R � †,
where R is symmetric and positive definite, which converges
even if R has unitary eigenvalues. The first step will be
to find a suitable decomposition of R which separates the
“good” eigenvalues (whose absolute value is less than one),
from the “bad” ones.

Lemma 1. If R is symmetric, positive definite and � R � � 1,
then there exist (and are unique) two matrices G and H such
that

R � G � H (6a)

Gn � G � n � 0 (6b)

lim
n � ∞

Hn � 0 (6c)

GH � HG � 0 (6d)

Before proving Lemma 1, observe that it is easy to ver-
ify by induction that if G and H satisfy (6), then

Rk � G � Hk � k � 1 � (7)
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Proof. Since R is symmetric, one can find a unitary matrix
U such that

R � UtDU (8)

where D is diagonal. Define

� D1 � ii �� � 0 if Dii �� 1

1 if Dii � 1
� � D � 1 � ii �� � Dii if Dii �� 1

0 if Dii � 1
(9)

It is easy to verify that G �� UtD1U and H �� UtD � 1U satisfy
conditions (6). In order to show that G and H are unique,
observe that from (7) it follows that limk � ∞ Rk � G which
implies that G and H � R � G are unique.

Property 1. If R, G and H satisfy (6) as in Lemma 1, then

� Id � R � † �
∞

∑
k � 0

Hk (10)

Proof. By exploiting (8) one can write Id � R � UtU � UtDU �
Ut � Id � D � U . It can be easily verified that

� Id � R � † � Ut � Id � D � †U (11)

where � � Id � D � † � ii � 0 if Dii � 1 and � � Id � D � † � ii � 1 � � 1 �
Dii � if Dii �� 1. It follows that � Id � D � † � ∑∞

k � 0 Dk� 1. By

exploiting such a result in (11), one obtains � Id � R � † �
Ut ∑∞

k � 0 Dk� 1U � ∑∞
k � 0 Hk

The final step is to transform equation (10) into an it-
erative algorithm for the computation of x � � Id � R � †y. A
possible implementation is described by equations

a0 � y b0 � y start (12a)

aN � RaN � 1 bN � bN � 1 � aN iteration (12b)

xN � bN � NaN end (12c)

Claim 1. If aN, bN, y and xN are as in (12), then limN � ∞ xN �
� Id � R � †y.

Proof. It is easy to show by induction that aN � RNy and
bN � ∑N

k � 0 Rky. By exploiting (7), one obtains

bN � y �
N

∑
k � 1

Rky � NGy �
N

∑
k � 0

Hky � (13a)

aN � RNy � � G � HN � y � Gy � HNy 	 (13b)

From (12c) and (13) one obtains xN � ∑N
k � 0 Hky � NHNy.

Since 
 H 
 �
1, it follows that limN � ∞ xN � � Id � R � †y.

By usual techniques it is possible to find the following
upper bound of the approximation error


 x � xN 
 � 
 H 
 N

�
N � 
 H 


1 � 
 H 
 � 
 y 
 (14)

Equation (14) shows that the convergence is controlled by
the largest eigenvalue of H and it is comparable to the con-
vergence of the algorithm of [2].

4.1. Implementation remarks

Note that algorithm (12) is expecially suited to the case of
a sparse R, since it requires only matrix-vector products
which can be efficiently computed when R is sparse.

Moreover, if the frame has been obtained by means of
an oversampled filter bank, operator R � Id � FI � FI can be
easily implemented by means of the original filter bank by
observing that

FI � y � ∑
k 
 Ic

φkyk � ∑
k 
 �

φk � χIy � k � F � χIy (15)

where � χIy � k � yk if k ��
I and � χIy � k � 0 if k

�
I. Re-

membering that operator F � corresponds to a synthesis fil-
ter bank having the (time reversed) frame functions as im-
pulse responses (note that it is not the dual bank), equation
(15) shows that FI � can be computed by setting to zero the
components of y corresponding to the lost coefficients and
feeding the result into a synthesis bank. Similarly, FI can be
implemented by running the original analysis filter bank and
discarding the values corresponding to the lost coefficients.
Overall, operator R can be implemented as a concatenation
of a synthesis and an analysis filter bank.

5. EXPERIMENTAL RESULTS

To illustrate the application of the theory presented above,
we consider in this section a Multiple Description coding
scheme for images. The filter bank has five channels, fol-
lowed by factor 2 subsampling in the row and column direc-
tions. The first four filters have impulse responses hi � j � m � n � �
δ � m � i � δ � n � j � , i � 0 � 1 � j � 0 � 1, while the fifth filter is
low-pass and obtained as the separable extension of the well
known Daubechies’s wavelet filter with length 4 [2]. Thus,
four subimages are obtained with dimension 1/4 of that of
the original image and corresponding to its spatial polyphase
components. An additional subimage is obtained by low-
pass filtering and subsampling by a factor 2 in the row and
column directions. The coding scheme has a redundancy
5/4. It is possible to show that the filterbank corresponds to
a frame expansion with bounds A � 1, B � 2.

Starting from a 512 � 512 input image, each of the five
256 � 256 subimages is divided into slices of 8 � 64 pix-
els, which are sent as packets over the network. Each of
the packets is lost independently with probability Pe. At the
receiver, the iterative algorithm outlined in Section 4 is ap-
plied to the received coefficients to reconstruct the image.
Fig. 1.a shows the image “Lenna” after one step of the re-
construction algorithm and a loss probability Pe � 0 	 02. The
areas corresponding to lost packets are clearly visible. In the
same figure, we show the reconstructed image after 300 it-
erations. In Fig. 1.c we show a detail of the reconstructed
image after 300 iterations. The detail is positioned below
the chin, where packet loss had incurred. Fig. 2 reports the
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(a)

(b)

(c)

Fig. 1. (a) Recovered image “Lenna” after one step (Pe �

0 � 02) (b) Recovered image “Lenna” after 300 steps (Pe �

0 � 02), (c) A detail of the reconstructed image after 300 it-
erations (packet loss positioned below the chin, Pe � 0 � 02)
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Fig. 2. PSNR vs. Number of Iterations of the iterative algo-
rithm for Pe � 0 � 01 (solid line) and Pe � 0 � 02 (dotted line)

average PSNR, in 10 independent experiments, between the
original and reconstructed images as a function of the num-
ber of iterations for two values of the probability of error,
i.e., Pe � 0 � 02 and Pe � 0 � 01. It is seen that the convergence
is quite slow, and, to have a reasonable complexity, it is im-
portant to apply the reconstruction only to image regions
affected by losses.

6. CONCLUSIONS

A robust iterative algorithm for reconstruction from redun-
dant filter banks has been presented. The advantage of the
presented algorithm, with respect to the usual iterative algo-
rithm for frame reconstuction, is the fact that it converges
to the least square solution even in the case of excessive
losses. It has been shown that the proposed algorithm con-
verges with the same velocity of the original one.
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Coding, Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1995.

[4] G. Strang, Linear Algebra and its Applications, Aca-
demic Press, New York, 1980.

II - 976

➡ ➠


