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ABSTRACT

The factorization of two-dimensional (2D) FIR paraunitary filter
banks is addressed in this paper. Our work is a generalization
of the factorization algorithm for one-dimensional (1D) parauni-
tary matrices. We will present a complete factorization for multi-
channel, two-dimensional, FIR paraunitary filter banks. The main
idea is considering a bivariate FIR matrix as a univariate polyno-
mial whose coefficients are matrices with univariate polynomial
entries. With this representation, a generalized version of the fac-
torization algorithm for the 1D case, developed in this paper, can
be used. In this direction, a new definition for paraunitary matrices
is proposed and a new degree-one building block is presented. The
final result is a building block that generates all 2D FIR parauni-
tary matrices.

1. INTRODUCTION

Filter banks over the complex field are extensively studied because
of their many applications in signal processing [1–5]. After de-
signing the filter bank for a specific application, it must be real-
ized. One of the realization methods is factoring the polyphase
matrices of the analysis and synthesis banks into the product of a
fully-parameterized building block. This method gives a minimal
realization in the number of the delay elements used to represent
the system, it is easy to implement in practice, it covers the whole
family of paraunitary matrices, and it is less sensitive to the quanti-
zation noise of the parameters of the building block [2]. When the
polyphase matrices are paraunitary, there exist a degree-one build-
ing block that generates them. However, generalizing this building
block to two or higher dimensions has been an open problem. This
paper addresses this problem. We will generalize the definition of
paraunitary matrices, introduce a new building block, and give a
complete factorization. Due to lack of any general realization tech-
nique for two-dimensional filter banks, the subclass of separable
paraunitary matrices are extensively used in image processing and
other applications. Algorithms provided in this paper broaden the
range of choice in designing two-dimensional filter banks. More
details about this work and an extension to dimensions higher than
two can be found in [6].

In the rest of this section, previous work in the factorization
and realization of multidimensional (MD) filter banks is briefly
reviewed. In Section 2, a complete factorization for a subclass
of 2D paraunitary matrices is proposed. Results of this section
will be used in Section 3 where a new 2D degree-one building
block and a modified factorization algorithm are introduced. An
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illuminative numerical example is also provided in this section.
Finally, Section 4 gives the concluding remarks.

1.1. Previous Work

To our knowledge, no complete factorization for MD paraunitary
matrices has been proposed yet. However, there are simple ways,
e.g., Kronecker product [7], to design the special class of sepa-
rable MD paraunitary matrices. This method can be easily gen-
eralized to higher dimensions, but it is not complete. Consider-
ing a 2D matrix with polynomial entries as a matrix polynomial
is discussed in [4, 8, 9]. A first-level state-space realization is pre-
sented in [9]. This approach results in a complicated algorithm and
a non-minimal realization. The primitive factorization technique
presented in [4] finds the greatest common divisor of all matrix co-
efficients and extracts it out as a factor. It is proved in [4] that every
2D matrix polynomial has a unique primitive factorization. In fact,
a factorization technique is presented, but the factors do not have a
parameterized structure. It is conjectured in [5] that every 2D pa-
raunitary matrix can be expressed as a product of FIR degree-one
building blocks in two variables. However, as discussed in [10],
this does not give a complete factorization. It is shown in [11]
that the 2D transfer scattering matrix can be factored if there ex-
ist solutions to a set of linear simultaneous equations. However,
this does not give a general approach. An ad hoc technique is pro-
posed in [12] to design 2D filter banks with triangular support, but
it is not a general method to factorize or generate all paraunitary
matrices.

1.2. Notation

1. Notation: The symbol A† represents the conjugate trans-
pose of the matrix A. The expression “matrix A over the
set S” means that matrix A takes all its entries from S.

2. Ring of Polynomials: The ring of univariate polynomials
with complex coefficients and monomials consisting of non-
negative powers of x is denoted by

�
[x+]. Rings

�
[x−]

and
�

[x±] are defined similarly. Similar definitions exist
for the ring of bivariate polynomials in x and y.

3. Tilde Operator: If E(x) is a 1D matrix, then Ẽ(x) �
E†(1/x∗). Similarly, Ẽ(x, y) � ET

∗ (x−1, y−1).

4. Paraunitary in a Ring: This is a natural generalization of
the paraunitary (PU) property. Suppose E(x, y) is a matrix
over

�
[x±, y±]. It is called PU in

�
[x±] if

∀x, y, Ẽ(x, y)E(x, y) = α̃(x)α(x)I, (1)

where α(x) ∈ �
[x±]\{0}.
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5. 1D Paraunitary FIR Degree-One Building Block: The gen-
erating building block for FIR paraunitary matrices is [2]

DFIR(t; v) � I − vv† + vv† t−1, (2)

where v is a column vector over
�

such that v†v = 1.

6. 1D Paraunitary IIR Degree-One Building Block: The gen-
erating building block for IIR paraunitary matrices is [2]

DIIR(t; v, a) = I − vv† + vv†
(−a∗ + t−1

1 − at−1

)
, (3)

where v is a column vector over
�

such that v†v = 1 and
a ∈ �

.

2. FACTORIZATION OF A SUBCLASS OF 2D
PARAUNITARY FILTER BANKS

Let E(x, y) be a 2D transfer matrix that is PU in
�

and FIR with
respect to y, but in general, IIR in x as follows

E(x, y) =
1

p(x)
E0(x) +

1

p(x)
E1(x) y−1, (4)

where p(x) ∈ �
[x−]\{0}. The following lemma, proved in [13],

gives a complete factorization when p(x) is a nonzero constant.

Lemma 1. Consider E(x, y) in (4). Suppose E0(x) and E1(x)
are matrices over

�
[x−] that do not have any common factor of

the form xi. Let p(x) be a nonzero constant, and Nx and Ny be
degrees of E(x, y) with respect to x and y, respectively. E(x, y)
is PU in

�
if and only if it can be factorized as

E(x, y) =

[
J∏

i=1

DFIR(x; vi)

]
Al

⎡
⎣Ny∏

i=1

DFIR(y; ui)

⎤
⎦

.Ar

[
Nx∏

i=J+1

DFIR(x; vi)

]
,

(5)

where Al and Ar are either identity or unitary matrices over
�

and 1 ≤ J ≤ Nx.

When p(x) is not a constant, the following lemma is applied
[6].

Lemma 2. Consider E(x, y) in (4) with all the conditions given
in Lemma 1. Assume p(x) ∈ �

[x−]\{0} has order L and E0(x)
and E1(x) do not have any common factor that can be cancelled
out by p(x). E(x, y) is PU in

�
if and only if it can be factorized

as

E(x, y) =

[
J∏

i=1

DIIR(x; vi, ai)

]
F(x, y)

.

[
L∏

i=J+1

DIIR(x; vi, ai)

]
,

(6)

where F(x, y) can be represented by (5) and 1 ≤ J ≤ L.

These two lemmas will be used in the next section to give a
complete factorization for all 2D paraunitary matrices.

3. FACTORIZATION OF TWO-DIMENSIONAL FIR
PARAUNITARY FILTER BANKS

In this section, a complete factorization for all K ×K paraunitary
matrices in

�
with entries from the ring

�
[x−, y−] is presented.

First, the matrix E(x, y) is expressed as a polynomial in y−1

whose coefficients are matrices over
�

[x−],

E(x, y) =

Ly∑
j=0

Ej(x) y−j , (7)

where Ej(x) �
∑Lx

i=0 Eij x−i for j = 0, . . . Ly . By the PU
property of E(x, y) we have⎡

⎣ Ly∑
j=0

Ẽj(x) yj

⎤
⎦

⎡
⎣ Ly∑

k=0

Ek(x) y−k

⎤
⎦ = I.

From here, we obtain

ẼLy (x)E0(x) = 0. (8)

Now, to factorize E(x, y) in (7) a new building block is de-
fined that is degree-one with respect to y and PU in

�
[x±].

3.1. 2D Degree-One PU Building Block in
�

[x±]

Consider the following 2D matrix polynomial

U(y; v(x)) � α(x)I − v(x)ṽ(x) + v(x)ṽ(x) y−1, (9)

where v(x) is a nonzero column vector over
�

[x±] and α(x) �
ṽ(x)v(x) ∈ �

[x±]\{0}. A direct computation shows that the
introduced matrix is PU in

�
[x±], i.e.,

Ũ(y; v(x))U(y; v(x)) = α2(x)I. (10)

The following lemma, proved in [6], gives the determinant of this
matrix.

Lemma 3. If U(y; v(x)) is the K×K paraunitary matrix defined
in (9), then detU(y; v(x)) = αK(x)y−1.

U(y; v(x)) can be realized by only one delay element in y as
the block diagram of Fig. 1. It will be proved in the next subsection
that U(y; V(x)) is the most general 2D degree-one building block
in y that is PU in

�
[x±].

����
��

����
��

����
��

y−1

� �

�

�

� �� �

v†(x)

−1

α(x)

v(x)

Fig. 1. 2D FIR degree-one building block in y that is PU in
�

[x±].

The next step of factorization is the degree reduction that is
explained in the next subsection.
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3.2. Degree Reduction Step

The following lemma gives a complete factorization for all 2D pa-
raunitary matrices.

Proposition 1. Every two-dimensional FIR matrix E(x, y) that is
paraunitary in

�
can be factorized as

E(x, y) =

[
1

αNy (x)
U(y; vNy (x))

]
. . .

[
1

α1(x)
U(y; v1(x))

]

.

[
1∏Ny

i=1 αi(x)
F(x)

]
. (11)

Here, Ny is the degree of E(x, y) with respect to y, vi(x)’s are
nonzero vector polynomial over

�
[x±], and F(x) is a matrix poly-

nomial over
�

[x±]. In (11), all terms inside brackets are PU in
�

.

Remark. This proposition gives a sufficient condition for the
factorization. If E(x, y) is a two-dimensional FIR paraunitary ma-
trix, then it can be factored as (11). However, given the factoriza-
tion of (11), we can only conclude that E(x, y) is PU, but not
necessarily FIR.

Proof. Similar to (7), write E(x, y) as a matrix polynomial in y.
Let detE(x, y) = βx−Nxy−Ny where Nx and Ny are the de-
grees of E(x, y) with respect to x and y, respectively [2]. Define
ENy (x, y) � E(x, y). Since ENy (x, y) is PU, from (8), we know
there exists a nonzero vector vNy (x) over

�
[x±] such that

ṽNy (x)E0(x) = 0. (12)

Define ENy−1(x, y) as follows

ENy−1(x, y) � Ũ(y; vNy (x))ENy (x, y). (13)

Here, the only noncausal term with respect to y is vNy (x)ṽNy (x)
E0(x) y. This term can be eliminated if ṽNy (x) is chosen as sug-
gested in (12). Multiplying both sides of (13) by U(y; vNy (x)),
we have

α2
Ny

(x)ENy (x, y) = U(y; vNy (x))ENy−1(x, y). (14)

Now, one can easily show

ẼNy−1(x, y)ENy−1(x, y) = α2
Ny

(x)I, (15)

which implies that ENy−1(x, y) is PU in
�

[x±]. By Lemma 3,
we have detENy−1(x, y) = βα−K

Ny
(x)x−Nxy−(Ny−1). There-

fore, the degree of ENy−1(x, y) with respect to y is less than
that of ENy (x, y) by one because a degree-one building block
with respect to y is successfully extracted. ENy−1(x, y) is PU in

�
[x±], so it is possible to extract a degree-one building block from

it. This procedure can be continued until all degree-one building
blocks with respect to y are extracted. After Ny times, the re-
mainder E0(x, y) will have determinant detE0(x, y) = βx−Nx∏Ny

i=1 α−K
i (x) that implies the degree of E0(x, y) with respect to

y is zero. Hence, E0(x, y) is independent of y, so it is denoted by
F(x). In summary, we have found the following factorization

α2
1(x) . . . α2

Ny
(x)E(x, y) = U(y; vNy (x)) . . .U(y; v1(x))

.F(x). (16)

After dividing both sides of (16) by α2
1(x) . . . α2

Ny
(x) and rear-

ranging terms, we get the desired result.

If αi(x) = ci ∈ � \{0} for some i, then using Lemma 1, we
can write

1

ci
U(y; vi(x)) = xmi

[
Ji∏

j=1

DFIR(x; ui,j)

]
Al,i

.DFIR(y; wi)Ar,i

⎡
⎣ Ni∏

j=Ji+1

DFIR(x; ui,j)

⎤
⎦ , (17)

where mi is a nonnegative constant. When αi(x) is a polynomial,
we can use Lemma 2 to obtain the factorization

1

αi(x)
U(y; vi(x)) =

[
Ji∏

j=1

DIIR(x; ui,j , ai,j)

]
Wi(x, y)

.

⎡
⎣ Ni∏

j=Ji+1

DIIR(x; ui,j , ai,j)

⎤
⎦ , (18)

where Wi(x, y) is an FIR paraunitary matrix that has order one
with respect to y, so it can be further factorized using Lemma 1.

If αi(x) = ci ∈ �
for all i = 1, . . . , Ny , then F(x)/

∏Ny

i=1 ci

is FIR and PU in
�

. Therefore, it accepts one-dimensional FIR
factorization [2]. Otherwise, if at least one of αi(x) is a polyno-
mial, then F(x)/

∏Ny

i=1 αi(x) will be IIR, so the IIR factorization
technique of [2] can be used. Therefore, considering Proposition 1,
the following theorem can be proved [6].

Theorem 1. Every two-dimensional FIR matrix E(x, y) that is
PU in

�
can be factorized as

E(x, y) = xm
N∏

i=1

Ai DIIR(x; vi, ai)DIIR(y; ui, bi), (19)

where m and N are integers, and Ai’s are either identity or uni-
tary matrices. Here, vi’s and ui’s are either zero or unit-norm
vectors and ai, bi ∈ �

.

The following fact is the immediate result of this theorem.

Fact 1. The general building block for two-dimensional FIR pa-
raunitary matrices is ADIIR(x; v, a)DIIR(y; u, b).

There are some remarks about Theorem 1 that are worth men-
tioning.

1. The appearance of IIR building blocks in the factorization
of FIR paraunitary matrices may seem unusual. However, it
is very similar to the factorization of polynomials over the
ring of integers, which is not always possible. It becomes
possible when we consider the polynomial over the com-
plex field that contains the ring of integers as a subalgebra,
but the factors will have complex coefficients. By multiply-
ing some adjacent factors, we might get a new factorization
into the product of irreducible polynomials over the ring of
integers. In the case of the factorization of Theorem 1, we
may get FIR factors if some adjacent IIR factors are multi-
plied.

2. Practically, there are interests in the problem of generat-
ing FIR paraunitary systems by cascading the elementary
building blocks. It would be ideal to find necessary and
sufficient conditions to ensure that the product of IIR fac-
tors in Theorem 1 are FIR systems. The following lemma
gives a sufficient condition [6].
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Fact 2. The expression DIIR(x; u, a)DIIR(x; v, 1/a∗) is
FIR paraunitary if and only if uu†vv† = uu† = vv†.

3. The factorization of Theorem 1 is minimal with respect to
y, but not necessarily with respect to x.

4. If a is a root of the polynomial α(x) in (9), then 1/a∗ is an-
other root. It means that some IIR factors in the factoriza-
tion of Theorem 1 are unstable. However, as stated before,
it is possible to multiply out some adjacent IIR factors and
get FIR terms.

The following example shows how to utilize the proposed fac-
torization technique.

Example 1. Consider the 2D paraunitary matrix

E(x, y) =
1

2

[
x−1y−1(1 − x−1) 1 + x−1

x−2y−2(1 + x−1) x−1y−1(1 − x−1)

]
.

It is easily verified that detE(x, y) = −x−3y−2. Thus, it has de-
grees three and two with respect to x and y, respectively. Writing
E(x, y) as a matrix polynomial in y, we get

E(x, y) =
1

2

[
0 1 + x−1

0 0

]
︸ ︷︷ ︸

E0(x)

+
1

2

[
x−1 − x−2 0

0 x−1 − x−2

]

.y−1 +
1

2

[
0 0

x−2 + x−3 0

]
y−2.

The unit-norm vector v2(x) = [0 1]T is orthogonal to E0(x)
from the left. Therefore, the factor U(y; v2(x)) can be extracted
from the left of E(x, y), so

E(x, y) =

[
1 0
0 y−1

]
1

2

[
x−1y−1(1 − x−1) 1 + x−1

x−2y−1(1 + x−1) x−1(1 − x−1)

]
︸ ︷︷ ︸

E1(x,y)

.

Writing E1(x, y) as a matrix polynomial, we will see that the fac-
tor U(y; [1 0]T ) can be extracted from the right, so

E1(x, y) =
1

2

[
x−1(1 − x−1) 1 + x−1

x−2(1 + x−1) x−1(1 − x−1)

]
︸ ︷︷ ︸

F(x)

[
y−1 0
0 1

]
.

Here, F(x) is a one-dimensional paraunitary matrix in
�

. Hence,
it can be factorized. Writing the factors obtained in each step next
to each other, we get the factorization

E(x, y) =

[
1 0
0 y−1

] [
1 0
0 x−1

] [
1−x−1

2
1+x−1

2
1+x−1

2
1−x−1

2

]

.

[
x−1 0
0 1

] [
y−1 0
0 1

]
.

4. CONCLUSION

A complete factorization for the class of two-dimensional FIR pa-
raunitary matrices was presented in this paper. The approach con-
siders a 2D paraunitary matrix as a 1D one whose coefficients are
polynomial matrices, and then uses a generalized version of the 1D
factorization algorithm. In this direction, the definition of parauni-
tariness is generalized and a new building block is defined that has

degree one in one of the variables and PU in the ring of polynomi-
als of the other variable. The generalized factorization algorithm
gives a first-level factorization in only one of the variables. The
next step is to factor each term obtained in the first step. Since
each factor has degree one with respect to one of the variables, the
problem reduces to factoring a special family of two-dimensional
paraunitary matrices. There already exist a factorization for a sub-
class of this family. We completed this factorization and gave a
complete factorization for the whole family. After putting all these
results together, we gave a fully-parameterized building block for
the whole family of two-dimensional FIR paraunitary matrices.
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