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ABSTRACT

M -channel paraunitary filter banks (PUFBs) can be designed and
implemented using either degree-one or order-one dyadic-based
factorization. This paper summarizes how regularity of a desired
degree is structurally imposed on such factorizations for any num-
ber of channels M ≥ 2 and any phase responses. The regularity
conditions are found to be conveniently expressed in terms of re-
cently reported M -channel lifting structures, which allow fast and
reversible implementations. Design examples are presented and
they outperform previously reported ones in transform-based im-
age coding.

1. INTRODUCTION

A causal M -channel filter bank with polyphase matrix E(z) is said
to be paraunitary (PU) if eE(z)E(z) = I, where the e operation
stands for conjugate transpose (†) and time-reversal (z → z−1).
Namely, E(z) is unitary on the unit circle |z| = 1. To implement
E(z), the minimum number of delay elements required is referred
to as the McMillan degree, or simply degree. Another important
but distinct concept is that of the order of E(z), which refers to
the highest power of z−1 appearing in E(z). An order-L (causal)
PUFB can have degree ranging from L to ML.

Any PUFB E(z) of degree N always assumes the factoriza-
tion E(z) =

Q1
m=NVm(z)E0 where Vm(z) = I − vmv†

m +

z−1vmv†
m with ‖vm‖ = 1 is the degree-one paraunitary build-

ing block, and E0 is unitary [1]. It is called the dyadic-based struc-
ture as it involves the dyadic form vmv†

m. Generalizing the above
degree-constrained structure, Gao et al. have recently proposed a
factorization given the order of the PUFB [2].

Regularity of a filter bank is equivalent to the number of van-
ishing moments of the M -band wavelets [3]. A PUFB is said to be
K-regular or have K degrees of regularity if its analysis lowpass
filter H0(z) has a zero of multiplicity K at the M th roots of unity
ej2πm/M for m = 1, . . . , M − 1. This is equivalent to

d�

dz�

n
E(zM )

ˆ
1 z−1 . . . z−(M−1)

˜T
o˛̨̨

z=1
= c�e0 (1)

where c� �= 0 for � = 0, 1, . . . , K − 1, and e0 is the 0th unit
vector of R

M [3, 4]. In many applications such as smooth signal
interpolation, approximation, and data compression [5–9], regular
filter banks are very desirable. It is hence essential to structurally
guarantee regularity, for both design and implementation.

For the class of M -channel linear-phase PUFBs (a.k.a. Gen-
LOT [10]) with M even, the imposition of up to two degrees of
regularity on the lattice structure was discussed in [11]. The reg-
ularity conditions were expressed in terms of the rotation angles

of the lattice components. On the other hand, for the most gen-
eral class of M -channel regular PUFBs without the linear-phase
constraint, the imposition of structural regularity has not been re-
ported, except when M = 2 for which the regularity of degree one
is guaranteed if all the rotation angles of the lattice structure sum
up to π/4 [5]. However, the structural conditions for regularity of
higher degree have not been reported in the literature. We aim to
solve this problem in its most general form by considering a higher
degree of regularity and an arbitrary number of channels M ≥ 2
with unconstrained phase responses. The resulting design outper-
forms and spans a larger class than the regular GenLOT [11].

Section 2 reviews the complete parameterizations of PUFBs,
namely, the degree-one and order-one factorizations. Then the
structural conditions for imposing up to two degrees of regular-
ity on these factorizations are summarized in Section 3. These
conditions find a natural and convenient expression in the context
of the M -channel lifting factorization, which allows efficient and
reversible implementations of the filter bank. Section 4 presents
two design examples along with their performance in a transform-
based image codec. Concluding remarks are found in Section 5.

Bold-faced characters denote either a column vector or a ma-
trix. The ith column of a matrix wm is denoted as wm,i, while
the ith element of an M -vector vm as vm

i . For i = 0, . . . , M − 1,
ei is the ith unit vector of C

M . 1M and 0M are the M -vectors of
all ones and all zeros, respectively, and IM denotes the M × M
identity matrix. ρ(A) denotes the rank of A. An m × n constant
matrix A is said to be unitary if A†A = In.

2. PRELIMINARIES

2.1. Householder Factorization of Unitary Matrices

The M -dimensional Householder transformation H[p] maps a given
vector x in C

M to a mirror image y with respect to a plane E with
unit normal p, i.e. y = H[p]x. By simple geometry, it can be
derived that H[p] = I − 2pp†, with ‖p‖ = 1. Given a unitary
matrix U, there exists a Householder transformation which aligns
the 0th column of U with e0:

H[p0]U =

»
ejθ0 0T

0 U1

–
, U†

1U1 = I.

Such a process can be repeated on U1 and so on, to arrive at
H[pM−2] . . . H[p0]U = D where D = diag(ejθ0 , . . . , ejθM−1),
θm ∈ R, or equivalently U = H[p0] . . . H[pM−2]D.

2.2. Dyadic-Based Factorizations for Paraunitary Filter Banks

The order-one factorization [2] and the degree-one factorization
[1,2] provide a complete parameterization of PUFBs with or with-
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out length constraint. Both will be used in this paper and are sum-
marized below.

Lemma 1 The dyadic-based structure with parameter vector vm

Vm(z) = I− vmv†
m + z−1vmv†

m, ‖vm‖ = 1 (2)

is the degree-one paraunitary building block: any degree-N pa-
raunitary polyphase matrix E(z) can be factored as

E(z) = VN(z)VN−1(z) . . .V1(z)E0 (3)

where E0 is unitary: E†
0E0 = I. This structure is the degree-one

factorization and is complete for any given degree N [1].

Lemma 2 The dyadic-based structure with parameter matrix wm

Wm(z) = I− wmw†
m + z−1wmw†

m, w†
mwm = Iγm (4)

is the order-one paraunitary building block for some integer γm

with 1 ≤ γm ≤ M . Any order-L paraunitary polyphase matrix
E(z) can be factored as

E(z) = WL(z)WL−1(z) . . .W1(z)E0 (5)

for some M × M unitary E0 and some integers γ1, . . . , γL. This
structure is the order-one factorization of E(z) and is complete for
any given order L [2].

Having reviewed the complete structures for PUFBs, we are
ready to present structural conditions for regularity.

3. DYADIC-BASED STRUCTURES WITH REGULARITY

3.1. One-Regular Dyadic-based Structures

A degree-0 M -channel PUFB with Type-I analysis polyphase ma-
trix E(z) = E0 is, by definition, 1-regular if and only if the 0th
row of E0 has identical elements equal to 1√

M
ejφ, φ ∈ R. The

following theorem summarizes the structural conditions for one
degree of regularity [12].

Lemma 3 A degree-0 and/or order-0 M -channel PUFB with Type-
I polyphase matrix E(z) = E0 is 1-regular if and only if E†

0 =

H[p0] . . . H[pM−2]D
† is such that p0

0 =
q√

M−s

2
√

M
ejη and

p0
i = −s ejη√

2(M−s
√

M)
, i > 0, where s = ±1 and η ∈ R. In this

case, E
`
zM

´
1M = c0e0 with c0 = s

√
Mejθ0 .

Theorem 1 A degree-N PUFB (3) or an order-L PUFB (5) is
1-regular if and only if E0 is 1-regular as in Lemma 3.

3.2. Two-Regular Dyadic-based Structures

Depending on the PUFB structures with or without length con-
straint, the following structural conditions for two degrees of reg-
ularity can be established [12].

Theorem 2 A degree-N PUFB (3) is 2-regular if and only if

1. E0 is 1-regular as in Lemma 3, and

2. the unit-norm vm of Vm(z) as in (2) satisfy

sM3/2
NX

m=1

vm∗
0 v̆m = −e−jθ0Ĕ0bM (6)

where bM =
ˆ

0 1 . . . M−1
˜T

, vm =
ˆ

vm
0 v̆T

m

˜T
,

and E0 =
h

sejθ0√
M

1M ĔT
0

iT

.

Theorem 3 (Two-Regular PUFB with Length Constraint)
An order-L PUFB (5) is 2-regular if and only if

1. E0 is 1-regular as in Lemma 3, and

2. the unitary wm �
ˆ

wm,1 wm,2 . . . wm,γm

˜
of

the order-one PU building blocks Wm(z) satisfy

sM3/2
LX

m=1

γmX
i=1

wm,i∗
0 w̆m,i = −e−jθ0 Ĕ0bM (7)

where wm,i =
ˆ

wm,i
0 w̆T

m,i

˜T
.

Based on the above results, one can show the minimum McMillan
degree required for two degrees of regularity to be one [12]. Note
that this is consistent with the fact that the minimum order for a 2-
regular PUFB is 1, and that the filter length is thus 2M [3] which
is a stronger requirement. One should also note that, if the linear-
phase property is imposed, this minimum length is increased to
3M [11].

Although not all choices of unit-norm vectors vm satisfy (6)
for the degree-one factorization, it is interesting to note that ap-
proximately half of the unit-norm vectors vm in (6) can be arbi-
trarily chosen in imposing two degrees of regularity. Similar com-
ments hold for the order-one factorization. Both are summarized
below.

Theorem 4 (Two-Regular Feasibility) Given a 2-regular degree-
one factorization (3) and the corresponding 2-regular condition
(6), suppose that Ak�{v1, . . . , vk} has been given. Then there
always exist unit-norm vectors vk+1, . . . , vN which, together with
vi in Ak , satisfy (6) regardless of the choice of Ak , for any k ≤˚

N
2

ˇ−1. Similarly, for a 2-regular order-one factorization (5)
and the corresponding 2-regular condition (7), suppose that B� �
{w1, . . . ,w�} has been given. Then there always exist unitary
matrices w�+1, . . . ,wL which, together with wi in B�, satisfy (7)
regardless of the choice of B�, for any � ≤ ˚

L
2

ˇ−1. It is under-
stood that Ak ≡ ∅ if N ≤ 2, and that B� ≡ ∅ if L ≤ 2.

3.3. Structural Regularity and Lifting Factorization

The recently reported M -channel lifting factorization allows ef-
ficient, reversible, and possibly multiplierless implementations of
the given filter banks, even under finite precision and/or nonlinear
liftings [13]. As is shown in [12], the M -channel lifting factoriza-
tion provides a natural parameterization of the problem of regular-
ity imposition—the important quantities vm∗

0 v̆m and wm,i∗
0 w̆m,i

in (6) and (7) turn out to be the lifting multipliers of the M -channel
lifting factorizations of Vm(z) and Wm(z), respectively. For
example, Vm(z) can be lifting-factorized as shown in (8), with
the lifting multipliers αm

i = vm∗
i /vm∗

r , βm
i = vm

i vm∗
r for some

r ∈ {0, 1, . . . , M − 1} with vm
r �= 0, and x stands for −x. Based

on this, the lifting factorization of Wm(z) can be obtained using
a parallel form [12]. The lifting representation of the Householder
matrix H[pm] is readily available by setting vm = pm and z =
−1 in (8), with the associated lifting multipliers σm

i = pm∗
i /pm∗

r

and ρm
i = pm

i pm∗
r for some r ∈ {0, . . . , M − 1} with pm

r �= 0.
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Vm(z)=

2
66666666664

1 αm
0

. . .
...

1 αm
r−1

1
αm

r+1 1
...

. . .
αm

M−1 1

3
77777777775

2
66666666664

1
. . .

1
βm

0 · · ·βm
r−1 z−1 βm

r+1 · · ·βm
M−1

1
. . .

1

3
77777777775

2
66666666664

1
. . .

1
βm

0 · · · βm
r−1 1 βm

r+1 · · · βm
M−1

1
. . .

1

3
77777777775

2
666666666664

1 αm
0

. . .
...

1 αm
r−1

1
αm

r+1 1

...
. . .

αm
M−1 1

3
777777777775

(8)

It is convenient to define the vectors of lifting multipliers:

αm �
ˆ

αm
1 αm

2 . . . αm
M−1

˜T
and (9)

βm �
ˆ

βm
1 βm

2 . . . βm
M−1

˜T
. (10)

One can show that they are related by βm = αm∗
1+‖αm‖2 or αm =

|vm
0 |−2βm∗, with |vm

0 |2 = 1
2

“
1 ± p

1 − 4‖βm‖2
”

or |vm
0 |2 =`

1 + ‖αm‖2
´−1

as a result of paraunitariness [12]. In this way,
one has 0 ≤ ‖βm‖ ≤ 1/2 and ‖αm‖2 = 1

|vm
0 |2

PM−1
i=1 |vm

i |2 =
1

|vm
0 |2 − 1 ≥ 0. As for Wm(z), one can similarly define lifting

multipliers αm,i and βm,i for i = 1, . . . , γm. However, as dic-
tated by the unitariness of the parameter matrix wm of Wm(z),
αm,i and βm,i must also satisfy the “obtuse-angle” condition as
described in [12].

3.3.1. One-Regular Lifting Structure

The one-regular condition can be expressed in terms of the lift-
ing multipliers. Consider a PUFB in either the degree-one fac-
torization (3) or the order-one factorization (5), with the unitary
matrix E0 parameterized as E†

0 = H[p0] . . . H[pM−2]D
†. For

i = 1, . . . , M−1, let σ0
i and ρ0

i be the lifting multipliers of H[p0]
as defined above. Then one can show that the PUFB is 1-regular if
and only if the lifting multipliers are such that σ0

i = (1−s
√

M)−1

and ρ0
i = −s(2

√
M)−1 for i = 1, 2, . . . , M − 1.

3.3.2. Two-Regular Lifting Structures

Similarly, the two-regular conditions can be expressed in terms
of the vectors βm. The second condition for 2-regularity (6) is
conveniently written as

NX
m=1

βm = −sM−3/2e−jθ0 Ĕ0bM (11)

for the degree-one factorization, and (7) becomes

LX
m=1

γmX
i=1

βm,i = −sM−3/2e−jθ0 Ĕ0bM (12)

for the order-one factorization. To summarize, consider a PUFB
as in (5) or (3) and let the unitary matrix E0 be parameterized by
the above one-regular lifting structure. Then, one can show that
the PUFB is two-regular with or without length constraint if and
only if the lifting multipliers satisfy (12) or (11), respectively.

It is in this way that the M -channel lifting factorization lends
itself to a natural and convenient parameterization of the problem
of regularity imposition.

Table 1: PUFBs Used in the Image Compression Experiment.
LPvn=n-Regular PULP in [11]; PUvn=n-Regular PUFB in Sec.4.

8×8 8×16 8×24 8×24 8×24 8×24

DCT LOT LPv1 LPv2 PUv1 PUv2

Reg. K 1 1 1 2 1 2

G (dB) 8.83 9.22 9.36 9.33 9.49 9.43

Cstop 3.09 .211 .133 .374 .088 .078

4. DESIGN EXAMPLES AND EVALUATIONS

The proposed regularity theory is implemented in this section. Based
on the proposed structures for regular PUFBs, optimal designs can
be obtained by unconstrained optimizations for some design crite-
ria such as stopband energy Cstop and coding gain G [1], which
are based to design the following one- and two-regular 8 × 24
PUFBs (M = 8 and order L = 2), denoted as PUv1 and PUv2,
respectively. The order-one building blocks Wm(z) are such that
ρ(w1) = ρ(w2) = 4. Fig. 1(b) and Fig. 2(b) plot the zeros of
the lowpass filters H0(z) and verify that the resulting designs are
indeed one- and two-regular, respectively. For PUv1, G = 9.49dB
and Cstop = 0.0876; for PUv2, G = 9.43dB and Cstop =
0.0780.

We now evaluate the performance of PUv1 and PUv2 with a
transform-based image codec, where each input image is block-
transformed using PUvn, and the transform coefficients are quan-
tized, zigzag scanned (runlength coding), and Huffman coded. Ta-
ble 1 summarizes the properties of PUvn and some other PUFBs in
the literature. Note that the proposed PUvn’s are the most general
designs and thus achieve the highest objective performance.

The coding results are tabulated in Table 2. As PUv1 and
PUv2 are the most general PUFBs, they almost always result in
higher PSNRs than their linear-phase counterparts (LPv1 and LPv2)
[11], with an exception for the image Goldhill at 8:1 compression
using one-regular PUFBs. It is observed in this experiment that the
compressed images obtained by using PUv1 and PUv2 have fewer
aliasing artifacts in the texture regions and that PUv1 and PUv2 re-
sult in smoother approximation (less blocky) in the smooth regions
than those obtained by using LPv1 and LPv2, respectively.

5. CONCLUSION

We have presented the theory and structures of the most general
PUFBs with up to two degrees of regularity. No constraint on the
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Table 2: Compression PSNRs in dB for the chosen transforms.

Barbara PSNR(dB)
Comp. 8×8 8×16 8×24 8×24 8×24 8×24
ratio DCT LOT LPv1 LPv2 PUv1 PUv2
8:1 35.38 36.49 37.05 36.66 37.22 37.22
16:1 30.24 31.83 32.23 31.81 32.50 32.48
32:1 26.42 27.86 28.18 27.90 28.53 28.41
64:1 23.77 24.88 25.11 25.00 25.43 25.33

Lena PSNR(dB)
Comp. 8×8 8×16 8×24 8×24 8×24 8×24
ratio DCT LOT LPv1 LPv2 PUv1 PUv2
8:1 38.83 38.96 39.29 39.18 39.34 39.33
16:1 35.51 35.79 36.31 36.12 36.41 36.42
32:1 32.08 32.66 33.07 32.76 33.24 33.22
64:1 28.91 29.60 29.94 29.65 30.16 30.16

Goldhill PSNR(dB)
Comp. 8×8 8×16 8×24 8×24 8×24 8×24
ratio DCT LOT LPv1 LPv2 PUv1 PUv2
8:1 35.29 35.63 35.77 35.64 35.72 35.74
16:1 31.97 32.36 32.49 32.37 32.49 32.46
32:1 29.31 29.76 29.87 29.72 29.90 29.86
64:1 27.12 27.56 27.70 27.56 27.72 27.68

number of channels M is assumed, and the phase responses of the
filters are not constrained. Both dyadic-based and M -channel lift-
ing structures are considered and the corresponding regular struc-
tures are proposed, whereby the M -channel lifting structure lends
itself to a natural and convenient parameterization of the problem
of imposing regularity. The resulting PUFBs are guaranteed to be
regular as the regularity conditions are structurally imposed. Reg-
ular PUFBs with or without length constraint are readily obtained.
Design examples have been presented and are found to outperform
previously published PUFBs in the literature.
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