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ABSTRACT
This paper introduces a factorization for the design of over-
sampled filter banks with linear phase and complex-valued co-
efficients. Our approach is based on the design of rectangular
paraunitary polyphase matrices and gives a general formulation
for perfect reconstruction filter banks with uniform sampling
in the subbands, critically sampled or oversampled, and linear
phase filters with real- or complex-valued coefficients. By using
a framework that is not restricted to modulation of a prototype
window, as in oversampled modulated filter banks, we are able
to increase the design freedom and to allow the design of non
uniform bandwidth oversampled filter banks.

I. INTRODUCTION

Oversampled filter banks find application in redundant wavelet
systems, signal filtering, and communication systems [1]–[4]. Our
interest in oversampled filter banks is due to their additional
design flexibility [5], [6] and their application in wavelet systems.
Wavelet systems implemented with filter banks are useful in
image processing. In such systems, the use of linear phase filters
is important to reduce the artifacts around the objects in the
image.

Although the theory of perfect reconstruction oversampled
filter banks has been extensively explored [5], [7], [8], the design
of oversampled filter banks has been restricted almost exclusively
to the class of modulated filter banks. In contrast to the earlier
oversampled works, in [9] we give under the same framework
the design of filter banks, oversampled or critically sampled, that
are not constrained by modulation of a prototype window. By
removing the constraint of modulation we are able to explore
the increased design freedom and to design oversampled filter
banks that are not restricted, for example, to integer oversampling
ratios [10] or frequency responses with uniform bandwidth. The
framework in [9], based on rectangular paraunitary polyphase
matrices, reveals a general approach for the design of linear phase
perfect reconstruction filter banks, either oversampled or critically
sampled. However, the factorization of linear phase filter banks
presented in [9] is restricted to filters with real-valued coefficients.

This paper extends the results in [9] to include the factorization
of oversampled filter banks with linear phase and complex-valued
coefficients. The factorization of rectangular paraunitary matrices
introduced in this paper permits analysis and synthesis with FIR
filters and a simple formulation of the constraints for linear phase.
Our factorization is derived from the factorizations proposed in
[9], [11] and [5], itself an extension of [12] used in the design
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of critically sampled filter banks. In the critically sampled case,
our factorization resembles the factorization derived in [13].

II. RECTANGULAR PARAUNITARY MATRICES

An M -channel filter bank with uniform sampling factor K in
the subbands is shown in Fig. 1. Perfect reconstruction means that
in the absence of processing, the output signal x̂[n] is a replica
of the input signal x[n]. In practice, perfect reconstruction is
accomplished with some delay introduced by the filters. The term
oversampled refers to filter banks where the sampling factor is
less than the number of channels; that is, 1 ≤ K < M ; the term
critically sampled refers to the case K = M . Our formulation
allows the amount of oversampling to be specified as a value in
the interval from the critically sampled, in which K =M , to the
maximum oversampled case, in which K = 1, meaning that no
downsamplers and upsamplers are used.
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Fig. 1. M -channel filter bank with uniform sampling factor K.

We consider an M -channel perfect reconstruction filter bank
with sampling factor K whose filters are causal and FIR. The
analysis filter bank is represented by the M × K polyphase
matrix E(z), which represents the set of M analysis filters
decomposed into K polyphase components each [14]. Similarly,
the synthesis filter bank is represented by the matrix z−P Ẽ(z),
where P is an integer and Ẽ(z) = E†(1/z∗). The symbol †
represents the transpose conjugate operation, and the symbol ∗
represents the conjugate operation.

Our approach to design perfect reconstruction filter banks
is to choose the matrix E(z) to be paraunitary [14]; that is,
Ẽ(z)E(z) = I, where I is the identity matrix. If the order of the
polynomials in Ẽ(z) is P , it is clear that z−P Ẽ(z) will have
no positive powers of z. In this case, both analysis and synthesis
banks have causal filters, and perfect reconstruction holds with a
delay K(P +1)−1, which implies x̂[n] = x[n−K(P +1)+1].

This paper introduces an approach for the design of over-
sampled filter banks with complex-valued coefficients and linear
phase filters based on the factorization of rectangular paraunitary
matrices proposed in [5]. The factorization in [5] can be used in
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the design of rectangular paraunitary matrices; however, it is not
in a form convenient for representing linear phase constraints.
This paper uses an equivalent factorization that gives a simple
formulation of the constraints for linear phase with complex-
valued coefficients.

The factorization in [5] can be written as [9]

E(z) = UL ΛmL(z)UL−1 ΛmL−1(z) . . . (1)

×U1 Λm1(z)U0,

where Ui, for i = 1, 2, . . . , L, are unitary matrices of size
M × M ; U0 is an M × K orthonormal matrix; and Λmi(z) is
the block diagonal matrix, defined by

Λmi(z) =

[
IM−mi 0

0 z−1 Imi

]
, (2)

where Imi is an identity matrix of size mi×mi. In the particular
case K = M , the factorization in (1) corresponds to the
factorization given in [13].

To provide an easy formulation of the constraints for the design
of filter banks with linear phase filters, (1) is written in the
equivalent form [9], [15]

E(z)=QLΛmL(z)Q†
LQL−1ΛmL−1(z)Q†

L−1 . . . (3)

×Q1Λm1(z)Q†
1Q0,

where Λmi(z), for i=1, 2, . . . , L, is defined in (2), and Qi =
UL UL−1 . . .Ui, for i=0, 1, . . . , L, such that Qi is unitary,
of size M × M , for i > 0, and of size M × K, for i = 0. The
square factors Qi Λ(z)Q†

i , for i = 1, 2, . . . , L, have the form

Qi Λmi(z)Q†
i =

[
Ui,0 0
0 Ui,1

]⎡⎣Ci 0 Si

0 I 0
Si 0 −Ci

⎤
⎦ (4)

×Λmi(z)

⎡
⎣Ci 0 Si

0 I 0
Si 0 −Ci

⎤
⎦[

U†
i,0 0

0 U†
i,1

]
,

where Ui,0 and Ui,1 are unitary matrices of sizes M − mi ×
M − mi and mi × mi, respectively. The blocks Ci and Si are
diagonal matrices defined, respectively, as

Ci = diag(cos θi,0, cos θi,1, . . . , cos θi,P−1)≥0, and

Si = diag(sin θi,0, sin θi,1, . . . , sin θi,P−1)≥0.
(5)

These matrices have size P ×P , where P =min(M −mi, mi) is
the smallest of M − mi and mi. The square matrices in (4) are
similar to the factors of the factorization of square paraunitary
matrices derived for the design of critically sampled filter banks in
[13]. In the next section, we impose to (3) additional constraints
for linear phase filters with real-valued coefficients.

III. LINEAR PHASE WITH REAL COEFFICIENTS

We derive the constraints on the factorization of the polyphase
matrix represented in (3) in order to obtain filters having the
linear phase property with real-valued coefficients. First, we need
to establish a characterization of the polyphase matrix which
reflects the linear phase property of the filters. We follow the
characterization used in [16] in the case of linear phase, critically
sampled, and paraunitary filter banks. The paraunitary matrix

corresponds to a set of filters which have linear phase that satisfies
the property

E(z) = z−L DM E(z−1)JK , (6)

where L is the order of the paraunitary matrix E(z), and JK is
the counter diagonal matrix of size K × K [16]. The matrix
DM in (6) is an M × M diagonal matrix whose diagonal
entries are +1 or −1, the +1 in those rows which correspond to
symmetric filters and the −1 in those rows which correspond to
antisymmetric filters.

It is important to observe that the characterization in (6) is not
unique; instead, it represents a large class of filter banks [16].
The filters described by (6) have the same center of symmetry at
((L + 1)K − 1)/2.

In the critically sampled case, when the polyphase matrix is
square, it is shown in [16] that if the number of channels M
is even, then there are M/2 symmetric and M/2 antisymmetric
filters. However, if M is odd, then there are (M+1)/2 symmetric
and (M−1)/2 antisymmetric filters. In the oversampled case, the
number of symmetric and antisymmetric filters does not need to
follow the same division of the critically sampled case. However,
due to the structure of the factorization in (3), we will assume
that the number of symmetric filters is equal to the number
of antisymmetric filters for M even, and that the number of
symmetric filters exceeds the number of antisymmetric filters by
one for M odd, as happens in the critically sampled case.

The linear phase property with real-valued coefficients is based
on E(z) defined according to (3) and (4) as

E(z) =

(
1∏

i=L

Ui Xi Λ(z)X†
i U†

i

)
V0. (7)

The property (6) and the factorization of E(z) in (7) can be
used to show that the number of symmetric and antisymmetric
linear phase filters imposes constraints on the factor V0. Follow-
ing the steps outlined in [16], taking the trace of both sides of
(6) we can show that

tr
(
DM V0 V†

0

)
=

{
0, for K even,
1, for K odd,

(8)

where tr(A) is the trace of matrix A. In the particular case of
the critically sampled filter bank, V0 V†

0 = I, the result in (8)
corresponds to the result derived in [16]. In this case, there is an
equal number of symmetric and antisymmetric filters for M even,
and one extra symmetric filter for M odd. In the oversampled
case, V0 is an orthonormal, non square matrix, constrained by
the linear phase property. Now, we derive the constraints on V0,
as well as the other terms in the factorization of E(z).

Applying the linear phase property (6) to E(z) results

z−L DM E(z−1)JK = (9)(
1∏

i=L

Ui Xi Λ(z)X†
i U†

i

)
DM V0 JK .

It can be shown that if the factors of E(z) are appropriately
chosen, depending on whether M is even or odd, then the
diagonal matrix DM can be propagated to the right of the product
between parentheses, bringing back the factors of E(z).
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Therefore, to satisfy the linear phase property, such that (9) is
equal to (7), it is required additionally that

V0 = DM V0 JK . (10)

We next consider the following four possible cases for even
and odd values of M and K. The factors of E(z) are indicated
first for M even.
• M even
For M even, we assume an equal number of symmetric and

antisymmetric filters, that is, DM = diag(I, −I). In this case,
(9) is valid if

Xi =
1√
2

[
I I
I −I

]
,Λ(z)=

[
I 0
0 z−1 I

]
,Ui =

[
Ui,0 0
0 Ui,1

]
, (11)

for i = 1, 2, . . . , L, where all the blocks in Ui, Xi and Λ(z)
have size M/2 × M/2. The constraints on the square factors of
E(z), represented by V(z) in (7), depend on M and not on K.
The constraints on V0 depend on whether K is even or odd.
• K even.
For K even, imposing (8) and (10) results

V0 =

[
V00 V00 JK/2

V10 −V10 JK/2

]
, (12)

where all the blocks have size M/2 × K/2. The rectangular
paraunitary matrix (7) with factors constrained as in (11) and
(12) corresponds to a set of linear phase filters, if the matrices
Xi, Ui, for i = 1, 2, . . . , L, and V0 have only real entries. In
the particular case that the paraunitary matrix is square, that is
K = M , it can be verified that the constraints in (11) and (12)
correspond to the constraints in [16] and [17].
• K odd.
For K odd, imposing (8) and (10) results

V0 =

[
V00 v V00 J(K−1)/2

V10 0 −V10 J(K−1)/2

]
, (13)

where V00 and V10 have size M/2× (K − 1)/2. Now, we can
look at the cases in which M is odd.
• M odd
For M odd, we assume that the number of symmetric filters

exceeds the number of antisymmetric filters by one, that is,
DM = diag(I, 1, −I). In this case, (9) is valid if

Xi =
1√
2

⎡
⎣ I 0 I

0
√

2 0
I 0 −I

⎤
⎦, Λ(z)=

⎡
⎣ I 0 0

0 z−1 0
0 0 z−2 I

⎤
⎦, (14)

and Ui = diag(Ui,0, Ui,1), for i = 1, 2, . . . , L. The block
Ui,0 has size (M + 1)/2× (M + 1)/2, and the block Ui,1 has
size (M − 1)/2 × (M − 1)/2. Note that we are assuming that
Λ(z) has the quadratic power z−2; therefore, the order of E(z)
is 2L and not L such that z−L in (9) must be substituted by
z−2L when M is odd. The form of the diagonal matrix Λ(z) is
based on the linear phase structure for 3-channel QMF banks in
[18].

The constraints on V0 depend on whether K is even or odd.
• K even.
For K even, imposing (8) and (10) results in the same type of

symmetry indicated in (12) but V00 has size (M + 1)/2×K/2
and V10 size (M − 1)/2 × K/2.

• K odd.
For K odd, imposing (8) and (10) results in the same type of

symmetry indicated in (13) but V00 has size (M +1)/2× (K −
1)/2 and V10 size (M − 1)/2 × (K − 1)/2.

An advantage of our approach for the factorization of linear
phase filter banks with M odd over the approaches in [16] and
[17] is that the formulation in (14) generates filters of equal
length. In [16] and [17] one of the symmetric filters has always
shorter length then the others and, as a consequence, more limited
frequency selectivity.

IV. LINEAR PHASE WITH COMPLEX COEFFICIENTS

The formulation of oversampled filter banks with linear phase
and complex-valued coefficients introduced in this paper is a
generalization of the factorization of square paraunitary matrices
for M even introduced in [11]. Furthermore, our formulation
corresponds to an extension of the factorization for the design of
linear phase filter banks with real-valued coefficients presented in
the previous section [9]. Our new formulation allows the design of
perfect reconstruction filter banks with linear phase and complex-
valued coefficients, critically sampled or oversampled, and even
or odd number of channels.

The paraunitary matrix with polynomials in z−1 and complex-
valued coefficients corresponds to a set of filters which have linear
phase that satisfies the property

E(z) = z−L DM E(1/z∗)∗ JK , (15)

where DM and JK are defined as in (6). We assume the same
division between symmetric and antisymmetric filters adopted in
(6). That is, for M even there is equal number of conjugate-
symmetric and conjugate-antisymmetric filters, and for M odd
there is an extra conjugate-symmetric filter.

The linear phase property is based on E(z) defined according
to (7). Now, however, the product Ui Xi, for i = 1, 2, . . . , L,
has complex entries. The linear phase property (15) of E(z)
implies that

E(z) = DM

(
1∏

i=L

U∗
i X∗

i Λ(z−1)XT
i UT

i

)
V∗

0 JK , (16)

where T represents the transpose operation. Proceeding as in the
case of paraunitary matrices with real-valued coefficients, the
matrix DM is propagated to the right of the product between
parentheses, bringing back the factors of E(z) in (7). This implies
that V0 must satisfy the property

V0 = DM V∗
0 JK . (17)

We next consider the following four possible cases for even and
odd values of M and K. The factors of E(z) are indicated first
for M even.
• M even
For M even, we assume an equal number of conjugate-

symmetric and conjugate-antisymmetric filters. That is, DM =
diag(I,−I). In this case, (16) is valid if Xi and Λ(z) are defined
as in (11), and

Ui =

[
I 0
0 jI

] [
Qi,00 Qi,01

Qi,10 Qi,11

]
︸ ︷︷ ︸

Qi

[
I 0
0 jI

]
, (18)
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where j =
√−1 and Qi is an M × M orthogonal matrix. That

is, QT
i Qi = I. The blocks in Qi, as well as, Ui, Xi and Λ(z)

have size M/2×M/2. Comparing the unitary matrix Ui defined
in (18) to the orthogonal matrix Ui defined in (11), we see that
the complex entries of Ui in (18) correspond to the two extra
blocks jQi,01 and jQi,10. The form of Ui in (18) is inspired in
[11].

For K even and odd, the constraints in (8) and (17) are satisfied
by (12) and (13), respectively. Now, we look at the cases in which
M is odd, extending the formulation in [11], which assumes M
even and square paraunitary matrices.
• M odd
For M odd, we assume that the number of conjugate-

symmetric filters exceeds the number of conjugate-antisymmetric
filters by one. That is, DM = diag(I, 1,−I). In this case, (16)
is valid if Xi and Λ(z) are defined as in (14), and

Ui =

[
IM+1

2
0

0 jIM−1
2

] [
Qi,00 Qi,01

Qi,10 Qi,11

]
︸ ︷︷ ︸

Qi

[
IM+1

2
0

0 jIM−1
2

]
,

where Qi is an M × M orthogonal matrix with blocks Qi,00

and Qi,11 of sizes (M + 1)/2 × (M + 1)/2 and (M − 1)/2 ×
(M − 1)/2, respectively. For K even, V0 is defined as in (12),
and for K odd, V0 is defined as in (13).

V. CONCLUSION

We have introduced a factorization of FIR oversampled filter
banks with complex-valued coefficients and linear phase filters
based on the factorization of rectangular paraunitary matrices.
The new factorization is an extension of our previous result
for the design of oversampled filter banks with real-valued
coefficients. The framework based on rectangular paraunitary
polyphase matrices reveals a general approach for the design of
linear phase perfect reconstruction filter banks. This framework
allows the amount of oversampling to be specified as a value
from the critically sampled to maximum oversampled, meaning
that no downsamplers and upsamplers are used.

After completing this paper, the authors learned of the real
case, but not the complex, being addressed in [19].
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