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ABSTRACT 

Recent researches found that multivariate shrinkage on 
multiwavelet transform coefficients further improves the 
traditional wavelet methods. It is because multiwavelet 
transform, with appropriate initialization, provides better 
representation of signals so that their difference from noise 
can be clearly identified. In this paper, we consider the 
optimal threshold selection for multiwavelet denoising by 
using multivariate shrinkage function. Firstly, we study the 
threshold selection using the Stein's unbiased risk 
estimator (SURE) for each resolution level when the noise 
structure is given. Then, we consider the method of 
generalized cross validation (GCV) when the noise 
structure is not known a priori. Simulation results show 
that the higher multiplicity (>2) wavelets usually give 
better denoising results. Besides, the proposed threshold 
estimators often suggest better thresholds as compared 
with the traditional estimators.

1. INTRODUCTION 

Consider estimating an unknown deterministic discrete 
signal fi from noisy observation gi,

iii fg ε+= , ni ,,1L= (1)
where ε=(…,εi,…) is independent and identically 
distributed (iid) Nn(0,σ2I) noise. The goal of denoising is to 
minimize the mean square error (MSE), 
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subject to the condition that the estimated signal f̂  is at 
least as smooth as f. It is found that multiwavelet denoising 
using multivariate shrinkage [1] gives consistently better 
results than the traditional wavelet shrinkage denoising. 
The improvement is contributed by the multiwavelet 
transform, which gives better signal representation so that 
noise and signal can be separated much easier. Besides, the 
multivariate shrinkage operator effectively exploits the 
statistical information of the transform coefficient vectors 
of noise that improves the denoising performance. Denote 
the vector filter bank for J levels discrete multiwavelet 
transform of multiplicity L as W and the prefilter as Q,

then the discrete multiwavelet transform for scalar signals 
is M=WQ. Hence w=Mg=v+ω, where v=Mf and ω=Mε.
The matrix M is designed such that the J levels output 
transform coefficient vectors are arranged into an n×1
vector, i.e. w=(…, wj,k

T,…)T where wj,k is kth transform 
coefficient vector of g at scale j, each vector contains L
elements. It is shown in [2] that, by adaptively applying 
different multivariate shrinkage operation to coefficient 
vectors at different resolution levels, improved denoising 
performance can be achieved. Let us express the level-
dependent multivariate shrinkage as wj,δ =Dj,δ⋅wj,, where 

][ ,, kj j
diag δδ η=D  for k=1,…,nj where wj is the level j

transform coefficient vectors of the observation, wj,δ is the 
shrunk coefficient vectors, and nj is the number of 
transform coefficient vectors at level j. Define kj ,δη  [2] as, 
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and δj denotes the shrinkage parameters {λj,Vj}. λj is the 
threshold for the shrinkage operation performed at level j,
and Vj is the covariance matrix of noise at level j, where
j∈ΖJ. If we are given covariance of ε, say Nn(µ,σ2Σ), we 
can compute the distribution parameters of the transform 
noise coefficient vector: µj=Mjµ and Vj=MjΣMj

T.

The selection of the threshold values is critical to the 
performance of multiwavelet shrinkage. Since the 
multivariate shrinkage function is different from that used 
in wavelet shrinkage, we cannot borrow the risk estimators 
suggested for scalar wavelet shrinkage to the selection of 
the parameter set δ. In this paper, we study two risk 
estimators for finding optimal threshold. We first study the 
approach based on Stein's unbiased risk estimator (SURE) 
for each resolution levels, namely LSURE [2]. Then, we 
further consider the generalized cross validation method 
[4][5] when the noise structure is not known (LGCV). 
Simulation results verify that the resulted risk estimators 
give better indication on threshold selection as compared 
to the traditional SURE and GCV estimators. Improved 
denoising performance is then achieved particularly for 
higher multiplicity multiwavelet shrinkage. 
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2. SURE FOR EACH RESOLUTION LEVEL 

Let us consider the residual error [5], 
( )21)( gg −= δδ nT 21 )()( wvvw −+−= δn (5)

where gδ be the denoised observation g with parameter δ,
wδ be the transform coefficient vector w of g after 
multivariate shrinkage. Note that g, w, and v are vectors 
such that g=(…,gi,…)T; w=(…,wj,k

T,…)T and v=(…, 
vj,k

T,…)T. The risk E(R(δ)) can be obtained as follows: 

( ) ( ) ( )δδδ zω,V ETrTERE n
2)()()( +−= (6)

where E(A) stands for the expectation of A, and Tr(A)
denotes the trace of matrix A. zδ = wδ -vδ is the difference 
between the shrunk observations and the shrunk true 
values. Eqn.(6) formulates the evaluation of the risk 
function using multivariate shrinkage with parameter set δ.
The first term on the right hand side of eqn.(6) can be 
obtained from observations. Assume that the noise 
covariance structure is given, V can be obtained using the 
approach as described above hence the second term is 
known. The remaining unknown is the last term. Consider, 
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It is equivalent to summing up the expectation of the inner 
products of ωj,k and ηδ(z j,k) at different scales. The noise 
vectors are distributed as multivariate normal 
ωj,k~NL(0,σ2Vj). With an abuse of notation, these 
expectations of inner products without the index k can be 
shown to be given by the following lemma. 

Lemma 1: For a multivariate normal distributed ω, ω ~
NL(0,V), and zδ=wδ -vδ=(ω+v)δ -vδ,
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where wVw 1−= Tϑ , ( )ωVωω
1

2
1exp)( −−= TKh , K is 

normalization constant and P denotes the probability. □

It can be shown that if the covariance of noise is I, the last 
two terms of eqn.(8) will reduce to ( )22 )()2( λϑϑλ ≥− EL ,

and becomes zero for the case of multiplicity L equals to 2. 
Then the effect of reducing noise by multivariate shrinkage 
is equivalent to that of traditional shrinkage on each 
components of coefficient vector independently. By 
substituting eqn.(8) to eqn.(6), we can obtain the risk 
function for a particular parameter set δ. For practical 
implementation, eqn.(7) and eqn.(8) can be approximated 
as in eqn.(9). For a particular level j, with the knowledge 
of the noise covariance in the form σ2Σ,
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where kj
-
j

T
kjkj ,

1
,, wVw=ϑ , nj is the number of coefficient 

vectors at level j. The operator }|{# 2
, λϑ ≥kjk  counts the 

number of non-zero coefficient vectors after shrinkage, 
which approximates the first term of eqn.(8). The optimal 
threshold δ can then be estimated by minimizing eqn.(9). 

3. GENERALIZED CROSS VALIDATION 

The above approach required a priori knowledge of noise 
structure that may not be obtained in some practical 
situation. To solve the problem, the Generalized Cross 
Validation (GCV) method is considered. The method of 
GCV has been applied in the derivation of a risk estimator 
for wavelet shrinkage [5] as follows: 
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where n is the total number of signal samples. A'δ is the so-
called derivative influence matrix such that gAg ⋅= δδ . It 
was proved that, by minimizing the GCV score, the 
threshold δ thus obtained approaches optimum 
asymptotically [5]. The same idea can be applied to the 
level-dependent multivariate shrinkage. Let us define the 
GCV function for multivariate shrinkage at level j as, 
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The numerator in eqn.(11) is the mean square norm of the 
difference between the shrunk and the original transform 
coefficient vectors. To evaluate the denominator of 
eqn.(11), we need to compute the trace of Jacobian of the 
influence matrix Aj,δ for each resolution level j. As 
indicated in [5], it can be shown that ( ) ( )δδ ,, jj TrTr DA ′=′ . So 

let us consider the computation of ( )δ,jTr D′  at a particular 

level j. To simplify the elaboration, we skip the index j in 
the following formulations. First, we compute the partial 
derivatives of the shrinkage function eqn.(4) on y, where 
y=wk, i.e. 

iy∂
∂ϑ

i
TT

i RJyRyJ += . (12)

where 1−=VR , Ji is an (L×1) vector with all elements zero 
except the ith element: T

i
i )0,...,1,...,0(=J . For 2λϑ < , the 

shrink vector 0y =δ , then the partial derivative of the ith

element of δy  w.r.t. iy  equal zero for i=1,…,L. On the 
other hand for 2λϑ ≥ , It can be shown that, 
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Therefore, ( )δ,jTr D′ , the sum of all elements of δ,jD′  that 

are above the threshold, is given by, 
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( )δ,jTr A′  = ( )δ,jTr D′
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where k = 1, …, nj. It is seen in the formulation above that 
the quantity ( )δ,jTr A′  counts the number of coefficient 

vectors that are not shrunk to zero and minus a term that is 
proportional to the average shrinking fraction kjj ,

2 /ϑλ ,

which must be obtained in performing the shrinkage. It 
should be noted that the shrinkage fraction is only required 
for multiwavelet of higher multiplicity. For bi-variate 
shrinkage (L=2), the GCV cost function eqn.(11) is 
equivalent to that used in wavelet shrinkage. Or in other 
words, the traditional GCV function can be used for bi-
variate shrinkage but not for multivariate shrinkage with 
L>2. It will be verified experimentally in the next section.

4. SIMULATIONS 

In this section, the performance of the proposed risk 
estimators for finding optimal threshold is investigated. To 
verify our findings, we use DGH wavelet with multiplicity 
4 and 5 [6][7]. To keep the simulations simple, the 
prefiltering is orthogonal and non-decimating whereas 
discrete multiwavelet filter bank is decimating. We use 
symmetrical extensions on the signal, if necessary, to 
handle the boundary problem. Simulation results were 
obtained by averaging the results from 100 trails of 
multiwavelet denoising on the test signals contaminated 

with iid noise with RNR=7 (RNR= 2/)var( σf ). The test 

signals include "Blocks" and "HypChirps" which are used 
in [9]. We measure the performance of different denoising 
algorithms for each resolution level j in terms of mean 
square error SEj= ( )2

, ,, ˆ∑ −
kj kjkj

ww . In the simulations, we 

test the following risk estimators: 
1. SURE estimator borrowed from wavelet shrinkage 

(bSURE) [5] 
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2. Proposed LSUREj, in eqn.(9). 
3. GCV estimator borrowed from wavelet shrinkage, 
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4. Proposed LGCVj, in eqn.(11). 

Denote the settings for the multiwavelet denoising using 
DGH wavelet of multiplicity 4 and 5 and the 
corresponding second order orthogonal prefilters as 
DGHO4 and DGHO5, respectively. The setting for the 
traditional bi-variate shrinkage using DGH wavelet of 
multiplicity 2 and the corresponding prefilter [7] is 

denoted as GHMXIA. We show the optimal denoising 
result for "HypChirps" by using several multiwavelet 
settings in Table 1. We can see that higher multiplicity 
multiwavelets usually give better performance for 
"HypChirps". In Table 2 and Table 3, we show the 
performance of various risk estimators for "HypChirps" 
and "Blocks", with the filter setting DGHO4, RNR=7, 
signal sample length n=213 respectively. LSURE and 
LGCV give the most accurate estimation of the optimal 
threshold whereas the traditional estimators do not perform 
satisfactorily in the case of higher multiplicities. We do not 
show the figures for bSURE because optimal threshold can 
hardly be derived from the estimator function. Figure 1 
and Figure 2 show the square error function versus various 
risk estimators (LSURE, LGCV, bSURE, bGCV) for 
multivariate shrinkage on level 1 and 2 transform 
coefficients of "HypChirps", with the filter setting DGHO4, 
RNR=7, signal sample length n=213 respectively. We can 
see that LSURE closely resembles the square error 
function. LGCV also gives good estimation to the square 
error function but with a bias. However, it also provides 
good indication on optimal threshold. On the other hand, 
the risk estimators borrowed from traditional wavelet 
shrinkage do not give good estimation to the square error 
functions and hence the optimal threshold. 

5. SUMMARY 

In this paper, we have studied two level dependent risk 
estimators for finding optimal threshold using in 
multiwavelet shrinkage of any multiplicity. Simulations 
show that they closely resemble the square error functions 
and lead to good indication to the optimal threshold. 
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Figure 1: Square error function vs various risk estimators (LSURE, 
LGCV, bSURE, bGCV) for multivariate shrinkage on level 1 
transform coefficients of "HypChirps", with DGHO4, RNR=7, 
signal sample length n=213.
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Figure 2: Square error function vs various risk estimators (LSURE, 
LGCV, bSURE, bGCV) for multivariate shrinkage on level 2 
transform coefficients of "HypChirps", with DGHO4, RNR=7, 
signal sample length n=213.

X-R GHMXIA DGHO4 DGHO5 
14-10 30.762130 21.402257 18.899297 
14-7 58.585198 41.005348 35.790809 
14-5 107.177545 75.335013 65.582380 
13-10 15.392905 10.769218 9.433921 
13-7 29.314460 20.574400 17.882119 
13-5 53.729335 37.766502 32.778420 
12-10 7.704642 5.425909 4.710848 
12-7 14.683652 10.375956 8.982693 
12-5 26.800919 19.009133 16.474120 
11-10 3.827422 2.625961 2.383254 
11-7 7.290475 5.019629 4.512822 
11-5 13.514009 9.242358 8.226527 

Table 1 - Square error with optimal thresholds when applying to the 
denoising of "HypChirps". X and R denote the signal length 2X and 
the RNR value respectively. 

E((λestimated-λOptimal)2)
Level Optimal 

Threshold LSURE bGCV LGCV 
1 0.102291 0.000111 0.001834 0.000277
2 0.112112 0.000251 0.001090 0.000310
3 0.061978 0.000054 0.001183 0.000086
4 0.057050 0.000078 0.001535 0.000153
5 0.054908 0.000110 0.000759 0.000277

E(SEj)Level Optimal 
SE LSURE bGCV LGCV 

1 1.129816 1.134188 1.175138 1.138291
2 3.161966 3.191734 3.248009 3.197312
3 5.400037 5.450049 6.060444 5.474825
4 6.049695 6.110799 6.752903 6.182111
5 4.832886 4.887008 5.081518 4.998154

Table 2: (DGHO4) Performance of the estimated parameter set and 
the corresponding average square error for LSURE, bGCV and 
LGCV on test signal “Hypchirps” with RNR = 7 and signal sample 
length n = 213.

E((λestimated-λOptimal)
2)

Level Optimal 
Threshold LSURE bGCV LGCV 

1 1.071360 0.034770 0.069890 0.038834
2 1.078440 0.050962 0.079986 0.057569
3 0.813360 0.016893 0.084217 0.018688
4 0.696030 0.010946 0.073336 0.015144
5 0.674610 0.021895 0.056818 0.024383

E(SEj)Level Optimal 
SE LSURE bGCV LGCV 

1 0.352259 0.392532 0.383042 0.401758
2 1.588368 1.849667 1.732944 1.927505
3 5.113884 5.463612 5.925474 5.525445
4 7.818871 8.169128 9.144206 8.437193
5 8.190111 8.726356 8.971381 8.857710

Table 3: (DGHO4) Performance of the estimated parameter set and 
the corresponding average square error for LSURE, bGCV and 
LGCV on test signal “Blocks” with RNR = 7 and signal sample 
length n = 213.
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