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ABSTRACT
The directionality and phase information provided by non-
redundant complex wavelet transforms (NCWTs) provide signif-
icant potential benefits for image/video processing and compres-
sion applications. However, because existing NCWTs are created
by downsampling filtered wavelet coefficients, the finest scale of
these transforms has resolution 4× lower than the real input sig-
nal. In this paper, we propose a linear-phase, semi-orthogonal,
directional NCWT design using a novel triband filter bank. At
the finest scale, the resulting transform has resolution 3× lower
than the real input signal. We provide a design example to demon-
strate three important properties for image/video processing appli-
cations: directionality, magnitude coherency, and phase coherency.

1. INTRODUCTION
Complex wavelet transforms, in which the real and imaginary parts
of the transform coefficients are an approximate Hilbert-transform
pair [1, 2], offer three significant advantages over real wavelet
transforms: shift invariance, directionality, and explicit phase in-
formation. These properties enable efficient statistical models for
the coefficients that are also geometrically meaningful. In [3], for
example, we identify distinct relationships between complex coef-
ficient magnitudes and phases, and edge orientations and positions,
respectively. Using these relationships, we develop an effective
Geometric Hidden Markov Tree (GHMT) model for the complex
wavelet coefficients.

Unfortunately, the success of geometric modeling in complex
wavelet coefficients has been limited to the class of redundant, or
overcomplete, complex transforms. This redundancy complicates
any application to problems such as image/video compression
where parsimonious signal representations are critical. To address
this issue, some researchers [4–6] have devised Non-Redundant
Complex Wavelet Transforms (NCWTs). Each of these implemen-
tations can be viewed as a combination of a downsampled positive-
frequency projection filter with a traditional dual-band real wavelet
transform. Therefore, at the finest scale, the complex wavelet
transform has resolution 4× lower than the real input signal. These
NCWTs do enjoy directionality and explicit phase information be-
cause of the approximate Hilbert-transform relationship between
real and imaginary parts of their transform coefficients. To date,
however, they have been significantly less amenable to geometric
modeling than their redundant counterparts.

In this paper, we propose a linear-phase, semi-orthogonal, di-
rectional NCWT design using a novel triband (downsample by 3)
filter bank (see Fig. 1). As we explain, a triband approach permits
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a natural, direct NCWT implementation using complex wavelet fil-
ters and a real scaling filter. At the finest scale, the resulting com-
plex wavelet transform has resolution 3× lower than the real input
signal. We provide a design example and illustrate some proper-
ties that may make our 2D non-redundant coefficients amenable to
geometric modeling.

2. A NON-REDUNDANT CWT

We now demonstrate how to construct a novel 2D NCWT as a sep-
arable extension of two 1D triband NCWTs that we label NCWTR
and NCWTC. The 1D NCWTR (Fig. 2) operates on Real inputs
while the 1D NCWTC (Fig. 3) operates on Complex inputs. The
idealized magnitude responses for the NCWTR and NCWTC fil-
ters are depicted in Fig. 1. Consider the block diagram in Fig. 4.
The notation X(z1, z2) denotes the z-transform of a real-valued
digital image x(n1, n2). To perform the 2D NCWT, first ap-
ply the 1D NCWTR on the rows of X(z1, z2) to obtain a real-
valued, lowpass subband X0(z1, z2) and a complex-valued, high-
pass subband X+(z1, z2). The frequency-domain support of these
subbands is depicted in Fig. 5. In Section 2.2, we shall explain
that redundancy considerations justify the elimination of the sub-
band X−(z1, z2) because X−(z1, z2) is the complex conjugate
of X+(z1, z2) for real-valued input, X(z1, z2). We complete the
2D NCWT by performing two different 1D transforms along the
columns of the subbands X0(z1, z2) and X+(z1, z2). Because the
subband X0(z1, z2) contains real-valued transform coefficients,
we apply the 1D NCWTR to the subband columns, thereby ob-
taining two output subbands X00(z1, z2) and X0+(z1, z2). (Once
again, the subband X0−(z1, z2) is discarded because it is redun-
dant.) Finally, we apply the 1D NCWTC to the complex coeffi-
cients of the X+(z1, z2) subband to obtain three output subbands
X+0(z1, z2), X++(z1, z2) and X+−(z1, z2).

The first level of the 2D NCWT is now complete. The five
output subbands partition the frequency domain as shown in Fig. 6.
This transform has higher directionality than the real wavelet trans-
form, because the latter transform cannot differentiate between
features oriented at 45 and −45 degrees. Subsequent levels of
the transform are obtained by recursively transforming the lowpass
subband X00(z1, z2). The 2D NCWT is easily inverted by apply-

Fig. 1. Idealized magnitude responses of triband filters.
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Fig. 2. 1D NCWTR for real signals.

Fig. 3. 1D NCWTC for complex-valued signals.

ing the appropriate 1D synthesis filter banks along the columns
and rows of the 2D transform coefficients. In the following sub-
sections, we shall design the 1D NCWTC and 1D NCWTR.

2.1. 1D NCWTC for Complex-Valued Signals

Fig. 3 shows the 3-band analysis filter bank that performs the first
level of a non-redundant complex wavelet decomposition of X(z),
the z-transform of x(n), a complex-valued input signal. H0(z)
has real filter coefficients while H+(z) and H−(z) have com-
plex filter coefficients such that H∗

+(z) = H−(z), which signi-
fies that the H+(z) filter coefficients are complex conjugates of
the H−(z) filter coefficients. The idealized magnitude responses
of these filters are shown in Fig. 1. Provided that H0(z) satisfies
existence conditions [7], X0(z) represents a scaling-coefficient se-
quence while X+(z) and X−(z) represent wavelet-coefficient se-
quences. Because |H+(ω)| and |H−(ω)| have one-sided magni-
tude responses in Fig. 1, each of the wavelet coefficient sequences
X+(z) and X−(z) exhibits a Hilbert-transform relationship be-
tween their real and imaginary parts. This property will enable
directionality and explicit phase information in the 2D NCWT.
The following argument shows that the decomposition provided
by Fig. 3 is non-redundant. Let the input signal x(n) consist of N
complex numbers. Then due to the decimation in each subband,
the subband signals x0(n), x+(n), x−(n) each have N/3 com-
plex coefficients. Since the input and the transform coefficients
each require the same amount of storage space (for N complex
numbers), the transform is non-redundant.

Fig. 4. Implementation of the 2D NCWT.

Fig. 5. Frequency-domain partitioning after 1D NCWTR on image
rows.

Fig. 6. Frequency-domain partitioning after 2D NCWT.

To implement the analysis filter bank in Fig. 3, we must ad-
dress the following design issues.

1. The frequency responses of the analysis filters must approx-
imate the idealized magnitude responses in Fig. 1.

2. To ensure that the 1D NCWTR in Section 2.2 is non-
redundant, we must have H∗

+(z) = H−(z).

3. To obtain smooth basis functions, H0(z) must satisfy exis-
tence and vanishing-moment conditions [7].

4. For image/video compression applications, the H0(z),
H+(z), H−(z) filter bank should be linear-phase and or-
thogonal [7].

5. A synthesis filter bank that reconstructs X(z) from the sub-
band signals X0(z), X+(z), X−(z) must exist [7].

Multi-band filter bank design is a difficult problem, and no di-
rect design method satisfies all the above criteria simultaneously.
Therefore, we have adopted the following approach to design our
analysis filter bank. First, we use Tran et al.’s parameterization
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Fig. 7. (a) Top: scaling function associated with H0(z). Bottom: complex wavelet associated with H+(z) (real part solid; imaginary part
dashed). (b) Magnitude and phase response of H0(z). (c) Magnitude and phase response of H+(z).

[8] to specify a length-9, 3-band, orthogonal, linear-phase, real-
coefficient filter bank. We then exploit the free parameters to im-
pose two vanishing moments on the scaling filter. In the resulting
system, let

�
E(z) denote the polyphase matrix [7] of the analysis

filter bank. Define

C =

�
�

1 0 0
0 1√

2

j√
2

0 1√
2

−j√
2

�
� , S =

�
�

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

�
� .

Now, the first, second and third rows of the polyphase matrix
C

�
E(z) contain the polyphase components for H0(z), H+(z) and

H−(z) respectively. These analysis filters satisfy all preceding
constraints except for Constraint 1, which is violated because the
magnitude responses |H+(ω)|, |H−(ω)| differ from the idealized
responses in Fig. 1. To satisfy Constraint 1, we must improve the
wavelet-filter magnitude responses by introducing free optimiza-
tion parameters without violating the other constraints. Therefore,
we define

U(z) =

�
�

z−1 0 0
0 z−1 u − uz−2

0 0 z−1

�
� ,

V (z) =

�
�

z−1 0 0
0 z−1 0
0 v − vz−2 z−1

�
�

and generate a new analysis filter bank with polyphase matrix
E(z) defined by E(z) = CV (z)U(z)S

�
E(z). Observe that the

entries in the first rows of C, S, U(z), V (z) guarantee that the
scaling filter specified by E(z) is the same (modulo shifts) as the
scaling filter specified by

�
E(z). Hence Constraint 3 is still satis-

fied by the E(z) system. Now, S introduces the free parameter
θ into E(z) without affecting Constraint 4 because S is orthogo-
nal and also preserves linear phase. Next, consider the matrices
U(z), V (z). These are left-extension matrices [9] that lengthen
the wavelet filters by introducing free parameters u, v into the anal-
ysis filter bank while preserving linear phase. However, orthogo-
nality of the wavelet filters is not preserved by these matrices. The
zeros in the first rows and first columns of the left-extension matri-
ces ensure that the the scaling filter specified by V (z)U(z)S

�
E(z)

is orthogonal to its own shifts as well as to shifts of the wavelet
filters, although the wavelet filters are not orthogonal to their own
shifts. Thus, in addition to semi-orthogonality [7], the basis associ-
ated with the V (z)U(z)S

�
E(z) system also has orthogonal scaling

functions. Therefore, the V (z)U(z)S
�
E(z) filter bank satisfies a

weakened form of Constraint 4 in which “orthogonal” is replaced
by “semi-orthogonal and H0(z) should be shift-orthogonal.” Note
that the scaling filter and two wavelet filters associated with the
V (z)U(z)S

�
E(z) system have lengths 9, 15, 21 respectively, be-

cause the U(z) and V (z) lengthen the original length-9
�
E(z)

system. Finally, the matrix C is introduced to transform the
real-coefficient polyphase matrix V (z)U(z)S

�
E(z) into E(z), the

second and third rows of which specify complex-coefficient fil-
ters H+(z) and H−(z) that satisfy Constraint 2. By optimizing
over the real-valued, free parameters θ, u, v, we obtained E(z)
with wavelet-filter magnitude responses that have minimum mean-
squared error with respect to the idealized responses in Fig. 1.
With H representing the Hermitian transpose, the polyphase ma-
trix for the synthesis filter bank corresponding to E(z) is given by
R(z) =

�
EH(z−1)SHU(z−1)V (z−1)CH because

�
EH(z), S, C

are paraunitary and U(z)−1 = U(z−1), V (z)−1 = V (z−1). In
Fig. 7(a), we depict the scaling function associated with H0(z) and
the complex wavelet associated with H+(z), while in Fig. 7(b) and
Fig. 7(c), we show the frequency responses for H0(z) and H+(z),
respectively.

2.2. 1D NCWTR for Real-Valued Signals

Creating the 1D NCWTR necessitates slight modifications to the
filter banks of the previous section. Consider Fig. 3 and assume
that the input x(n) is a real-valued signal consisting of N real
numbers. Since H0(z) has real coefficients, x0(n) has N/3 real
numbers, while x+(n) and x−(n) each have N/3 complex num-
bers. However, because complex numbers have real and imag-
inary parts, the transform coefficients x0(n), x+(n), x−(n) re-
quire storage space for 5N/3 real numbers. Therefore, for real-
valued input, this transform is redundant because the transform
coefficients require more storage space than the input signal.

To obtain a non-redundant transform for real-valued input, ob-
serve that x−(n) is the complex conjugate of x+(n), because x(n)
is real-valued and H∗

+(z) = H−(z). Therefore x−(n) contains
the same information as x+(n), and may be discarded because it
is redundant. Fig. 2 shows the modified analysis filter bank for the
1D NCWTR after eliminating the H−(z) branch in Fig. 3. In this
case, if x(n) has N real numbers, then x0(n) and x+(n) have N/3
real numbers and N/3 complex numbers respectively. The trans-
form is now non-redundant because the input signal and transform
coefficients each require the same amount of storage space. To re-
construct X(z), we can generate X−(z) from X+(z) by setting
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Fig. 8. 2D complex wavelet basis functions (imaginary parts shown).

Fig. 9. Left: Barbara image. Center and right: magnitudes and phases of vertical subband complex wavelet coefficients.

X−(z) = X∗
+(z) and then using the synthesis filter bank asso-

ciated with the 1D NCWTC in Section 2.1. In practice, we actu-
ally reconstruct X(z) without generating X−(z). Instead, we use
X0(z) and the real and imaginary parts of x+(n) as input to the
synthesis polyphase matrix

�

EH(z−1)SHU(z−1)V (z−1). Due to
space limitations, we omit the proof for this second reconstruction
technique.

3. PROPERTIES OF THE NEW 2D TRANSFORM
In conclusion, we briefly mention some favorable 2D-NCWT
properties that may be useful for image/video processing.

Directionality: Fig. 8 shows the 2D complex basis functions
for the four directional wavelet subbands. As discussed in Sec-
tion 2, the 2D NCWT has higher directionality than the real
wavelet transform. Specifically, the filters provide distinct basis
functions for the 45 and −45 degree subbands, in addition to ver-
tical and horizontal basis functions.

Magnitude coherence: Fig. 9 shows the first-level vertical sub-
band of the 2D NCWT of the Barbara image. The magnitudes suc-
cessfully identify image regions with strong directional tendency.
In addition (and unlike real wavelet coefficients), the magnitudes
have a smooth envelope along edges.

Phase coherence: Also shown in Fig. 9 are the phases of the
complex coefficients. In regions with strong directional tendency
(i.e. where coefficient magnitudes are large), the phases typically
demonstrate a degree of structure, or coherency.

The above properties suggest that the 2D-NCWT may be well-
suited to image processing and geometric modeling. For example,
a zerotree compression algorithm [10] could be developed based
on coefficient magnitudes. In the future, we plan to investigate
extending the GHMT [3] to the new transform. Such techniques
will require a novel nona-tree structure due to the triband filter

bank. Each complex coefficient will have 9 children (instead of 4,
as with dual-band real wavelet transforms). In addition, the higher
decimation provides greater frequency separation between wavelet
scales (more than one octave), and so less depth will be needed in
the tree.
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