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ABSTRACT

Video processing techniques using true 3D transforms are
largely unexploited, partly because of the drawbacks of tra-
ditional separable 3D transforms. In this paper we use a
new type of non-separable 3D wavelet transform for video
denoising and overcome the motion-mixture problem by us-
ing oriented complex wavelets. This wavelet transform is
a 3D version of Kingsbury’s 1D and 2D dual-tree wavelet
transforms. We also investigate video denoising techniques
using a combination of both 2D and 3D oriented wavelet
transforms. The results are compared with those obtained
by separable wavelet transforms.

Keywords: Video denoising, 3D wavelet, dual-tree com-
plex wavelet transform

1. INTRODUCTION

Although video sequences can be perceived as 3D data vol-
umes that have strong correlation both in space and in time,
little research is focused on true 3D decomposition of video.
This is mainly because the structure of traditional separable
decompositions, e.g., the separable 3D wavelet transform,
usually do not provide an efficient representation of motion
– an important type of information contained in video. We
can demonstrate this drawback by interpreting a 3D separa-
ble wavelet as a video sequence. As a function of time, the
wavelet displays no conspicuous motion. This is true for
any separable wavelet transform.

For more efficient representations of video, we turn to
non-separable wavelet transforms. In this paper, we adopt
the 3D version of Kingsbury’s dual-tree complex wavelet
transform (CWT) [1, 2], which has the orientation prop-
erty that leads to a motion-selective subband decomposi-
tion. Thus, this transform takes into account the motion
of image elements for video denoising, without explicitly
using motion estimation.

Furthermore, for such special 3D data as video, it is not
optimal to treat all the three dimensions equally. In this
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paper we also introduce an algorithm that combines both the
2D and 3D oriented wavelet transforms for video denoising.
We compare both the PSNR values and the visual effects of
denoising results using the separable 3D wavelet transform,
the 2D CWT, the 3D CWT, and the combined method.

2. PRELIMINARIES ON THE ORIENTED
COMPLEX WAVELET TRANSFORM

We begin with 2D to illustrate the orientation of the complex
wavelet transform. For more details, refer to [3]. As shown
in Fig. 1, the standard separable 2D wavelet transform has
the checkerboard artifact that arises in the separable imple-
mentation. For the separable 2D wavelet transform, the 2D
wavelet is given by ψr(x, y) = ψr(x) ψr(y), where ψr(·) is
a real wavelet. If we idealize the wavelet as high-pass, the
2D separable wavelet for the HH subband has four separate
passbands. Therefore the wavelet mixes directions of ±45◦.

The dual-tree CWT overcomes this artifact by using an-
alytic complex wavelets – wavelets that have one sided spec-
trums. Design techniques are addressed in [1, 4, 5]. The
key idea is to design a pair of wavelets ψh(x) and ψg(x)
such that ψg(x) = H{ψh(x)}, where H denotes the Hilbert
transform. Then ψ(x) = ψh(x) + j ψg(x) is analytic. The
2D complex wavelet is given by ψ(x, y) = ψ(x) ψ(y) and
has only one passband. Therefore it’s real part has two
symmetric passbands and captures only one direction. For
the other direction, consider the real part of the complex
wavelet ψ2(x, y) = ψ(x) ψ(y), where the overline repre-
sents complex conjugation. We illustrate the real part of one
particular 2D dual-tree wavelet and its idealized spectrum in
Fig. 2.

3. THE 3D ORIENTED COMPLEX WAVELET
TRANSFORM

For the separable 3D wavelet transform, the wavelets mix
even more orientations, as shown in Fig. 3. However, the
problem can again be solved by the same principle used in
the 2D dual-tree CWT. Using the same Hilbert transform
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Fig. 1. Separable 2D wavelet of the HH subband and its
idealized spectrum (shadow represents passband) .

Fig. 2. Non-separable 2D complex wavelet (real part only)
of the HH subband and its idealized spectrum.

pair ψh(·) and ψg(·), consider the 3D complex wavelet,

ψ(x, y, z) = ψ(x) ψ(y) ψ(z) =
(ψh(x) + j ψg(x))(ψh(y) + j ψg(y))(ψh(z) + j ψg(z)).

(1)
As in the 2D case, we take the real part of ψ(x, y, z) to get
an oriented real 3D wavelet. Define:

ψ1 := ψh(x) ψh(y) ψh(z) (2)

ψ2 := ψg(x) ψg(y) ψh(z) (3)

ψ3 := ψg(x) ψh(y) ψg(z) (4)

ψ4 := ψh(x) ψg(y) ψg(z). (5)

The real part of ψ(x, y, z) in (1) can be written compactly
as

Real Part{ψ(x, y, z)} = ψ1 − ψ2 − ψ3 − ψ4. (6)

The resulting 3D dual-tree CWT only captures one orien-
tation (shown in Fig. 4) instead of four with the separa-
ble wavelet transform. For the other three orientations, we
consider the real part of ψ(x) ψ(y) ψ(z), ψ(x) ψ(y) ψ(z),
and ψ(x) ψ(y) ψ(z). This gives the following orthonormal
combination matrix of the four separable 3-D wavelet trans-
forms:

ψa(x, y, z) = 0.5 (ψ1 − ψ2 − ψ3 − ψ4)
ψb(x, y, z) = 0.5 (ψ1 − ψ2 + ψ3 + ψ4)
ψc(x, y, z) = 0.5 (ψ1 + ψ2 − ψ3 + ψ4)
ψd(x, y, z) = 0.5 (ψ1 + ψ2 + ψ3 − ψ4) .

(7)

The 3D dual-tree wavelets are motion-selective. This prop-
erty of can be better illustrated by video clips of the wavelets,
where both motion and edge information is displayed.

Fig. 3. Isosurface of a separable 3D complex wavelet (real
part only) of the HHH subband and its idealized spectrum.
The two colors represents surfaces of positive and negative
values, respectively.

Fig. 4. Isosurface of a non-separable 3D complex wavelet
(real part only) of the HHH subband and its idealized spec-
trum. The two colors represents surfaces of positive and
negative values, respectively.

4. VIDEO DENOISING USING THE 3D
DUAL-TREE TRANSFORM

In this paper we use soft thresholding with only the real
part of the CWT. This is enough to show the advantage of
oriented wavelet transforms and requires less computations,
though better performance is expected by using both the real
and imaginary part. For the purpose of comparison, for each
transform the optimal threshold is found using the original
noise-free data. The same threshold is used for each sub-
band of the respective types of wavelet transform. In prac-
tice, the threshold can be estimated from the noise data as
in [6].

The test video consists of a stationary view with a per-
son walking across the scene. Frames from the test video,
the noisy video, and each of the processed videos are shown
in Fig. 5 and 6. The two figures contain two typical types
of video frames, one with only a stationary background and
the other with a moving object. The PSNR value of the de-
noised video using the 2D CWT is 27.25. In this case, the
2D CWT is applied to each frame individually. Using the
3D separate wavelet transform, the PSNR value is 27.81,
while using the 3D CWT it is 28.99. The difference of the
denoised videos is more visible when viewing the video se-
quence.

However the resulting videos also show the limitations
of the oriented 3D dual-tree transform. For frames contain-
ing fast motion, the dual-tree 2D transform can give a su-
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perior result, which can be perceived in frame 21 when a
person passes through the scene (Fig. 6). For this frame,
the 2D dual-tree transform does best because for fast mo-
tion it is more difficult to exploit the temporal correlation of
pixel values. The 2D and 3D oriented transforms each have
their benefits for video denoising. Inspired by the work by
Starck, Candés and Donoho [7] on image denoising using
both the curvelet and the separable wavelet transforms, we
investigate likewise the combined use of the 2D and 3D ori-
ented wavelet transforms for video denoising, which will be
introduced in the next section.

5. VIDEO DENOISING USING COMBINED 2D AND
3D DUAL-TREE TRANSFORM

Since video is a quite unique type of 3D data, it’s intu-
itive to treat the third dimension – time, differently. Here
we use an algorithm seeking the best representation of a
video, using simultaneously the 2D and 3D dual-tree trans-
forms. The idea is to seek the best basis that leads to the
sparsest representation of the 3D data, using the 2D and
3D wavelets as candidate dictionaries. Various methods
have been developed to achieve (or at least to approach)
this [8, 9, 10, 11], among which are the Matching Pursuit
method [8] and Basis Pursuit method [9]. Here we use the
BPDN (Basis-Pursuit denoising) algorithm which is also
adopted by Starck et.al. in [12]. It is implemented by a
numerical Block-Coordinate-Relaxation method [13].

The algorithm is aimed at minimizing the target function

min
{X2,X3}

√
2||W2X2||1+||W3X3||1+

1
2λ

||X−X2−X3||22,
(8)

where W2 and W3 are the 2D and 3D dual-tree wavelet
transform, respectively, X2 and X3 are the part of video
data best represented by the 2D and 3D transform, respec-
tively, and X is the original (noisy) video data.

Under the occurrence of noise, we seek to minimize the
l1 norm of the coefficients with a penalty term of weighted
square error between the sum of the two decomposition re-
sults and the given video. Note that the weight

√
2 is used to

balance the 2D and 3D coefficients because using our dual-
tree wavelet package, the norms of 2D wavelets are about√

2 times those of 3D wavelets. (This is because both are
tight frames and because the 3D CWT is twice as expansive
as the 2D CWT.)

The numerical method can be described as follows:

1. Extract the low frequency part Xl.
Let X = X − Xl.

2. Initialize threshold T = λ · L, number of
iterations N, X2 = X3 = 0.

3. Repeat updating X2 and X3 for N
times:

(a) R = X − X3;

(b) w2 = W2(R);

(c) w2 = soft(w2,
√

2T ), X2 = W−1w2;

(d) R = X − X2;

(e) w3 = W3(R);

(f) w3 = soft(w3, T ), X3 = W−1w3.;

4. If T > Tn, T = T − λ, go to step 3.

5. Add back the low frequency part.
X3 = X3 + Xl

As mentioned by Starck et.al., the advantages of this
algorithm include the following: (a) There is no need to
keep all the transform coefficients in memory, which is good
especially for redundant transforms. (b) The algorithm has
the capacity to include various constraints for optimization,
which makes it flexible. The algorithm also automatically
thresholds the coefficients for denoising purpose.

Since fast motion causes singularities in the time dimen-
sion, it is difficult to represent it efficiently by the 3D trans-
form. We expect that after the 2D and 3D combined decom-
position, X2 mainly contains the fast motion. Indeed it is
true for our results, as shown in Fig.7.

For comparison with the work in the previous section,
we also choose the best threshold Tn using the original noise-
free data. (In practice Tn is about twice of the noise vari-
ance.) The PSNR value for our combined method is 28.46.
Though it’s not as good as the 3D method, the denoising
result is surprisingly better visually. In Fig.5 and 6 we also
show the denoising result of the two frames.

6. CONCLUSIONS AND FUTURE WORK

In this paper we use the oriented 3D CWT for video de-
noising and obtain better results than the separable wavelet
transform. The 3D CWT is the 3D version of Kingsbury’s
dual-tree complex wavelet transform. It will also be of in-
terest to extend to 3D other directional signal representation
methods, e.g., curvelets [14, 15], directional filter banks and
pyramids [16, 17], complex filter banks [18], the steerable
pyramid [19, 20] and to investigate their use for video de-
noising. This paper also introduces a numerical optimiza-
tion method for 2D and 3D combined wavelet decompo-
sition and denoising. Without significantly degrading the
PSNR value, it improves the visual quality of the denoised
video. For this method, a better choice of parameters and
constraints need further consideration.
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Fig. 5. Comparison of denoising results: frame 40 with sta-
tionary background. First row: original frame, 3D separa-
ble, 3D oriented. Second row: noisy frame, 2D oriented,
combined 2D & 3D oriented.

Fig. 6. Comparison of denoising results: frame 21 with
moving person. Same ordering as in Fig. 5

Fig. 7. Illustration of the 2D and 3D part separately. Frame
21 and 40. Left column: X2, right column: X3.

II - 952

➡ ➠


