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ABSTRACT

In this paper, we consider classes of not bandlimited signals, namely,
streams of Diracs and piecewise polynomial signals, and show that
these signals can be sampled and perfectly reconstructed using
wavelets as sampling kernel. Due to the multiresolution structure
of the wavelet transform, these new sampling theorems naturally
lead to the development of a new resolution enhancement algo-
rithm based on wavelet footprints [2]. Preliminary results show
the potentiality of this algorithm.

1. INTRODUCTION

A critical element in modern signal processing and communica-
tion is sampling. Most continuous-time phenomena are analyzed
through sampling. Often, the original continuous-time signal x(t)
is filtered before sampling and this filtering may be due to the ac-
quisition device or may be a design choice. Let h(t) be the im-
pulse response of this filter. Then, the uniform sampling of x(t)
with sampling interval T leads to samples yn given by

yn = 〈h(t − nT ), x(t)〉 =

∫
∞

−∞

h(t − nT )x(t)dt.

The key problem is to find the best way to reconstruct x(t) from
its samples. If x(t) is bandlimited, than the Shannon sampling
theorem states the conditions to reconstruct x(t) from yn’s.

Recently, it was shown that it is possible to develop sampling
schemes for classes of signals that are not band-limited [8]. In par-
ticular, it was shown that it is possible to sample streams of Diracs
and piecewise polynomial signals using a sinc or a Gaussian ker-
nel. The common feature of these signals is that they have a para-
metric representation with a finite number of degrees of freedom.
This number of degrees of freedom is called rate of innovation.
Thus, streams of Diracs and piecewise polynomial signals are sig-
nals with a finite rate of innovation.

In this paper, we extend the results of [8] and show that streams
of Diracs and piecewise polynomial signals can be sampled and
perfectly reconstructed using wavelets as sampling kernel. Due
to the multiresolution structure of wavelets, these new results nat-
urally lead to a new algorithm for resolution enhancement. This
algorithm is based on the notion of wavelet footprints which was
introduced in [2]. For an excellent review on sampling we refer
to [5]. Some pioneering works on sampling with the wavelet trans-
form can be found in [6].

The paper is organized as follows: The next section presents a
brief review of the wavelet transform. In Section 3, we present new
sampling theorems for signal with a finite rate of innovation. In
Section 4 we provide an interpretation of these sampling results in
terms of resolution enhancement and we present a footprint-based
algorithm for resolution enhancement. We conclude in Section 5.

2. THE WAVELET TRANSFORM

This section presents a brief review of the wavelet transform. For
a more detailed treatment, we refer the reader to [1, 7, 4, 3].

Consider a wavelet function ψ(t) that generates a basis of
L2(R). That is, assume that ψ(t) satisfies the admissibility condi-
tion and that the set of its dilated and shifted versions ψm,n(t) =

1

2m/2
ψ(2−mt − n) m, n ∈ Z forms a basis of L2(R). The dis-

crete wavelet transform is a unique and stable decomposition of
any finite energy signal x(t) in terms of {ψm,n}m∈Z,n∈Z or

x(t) =
∞∑

m=−∞

∞∑
n=−∞

dm,nψm,n(t). (1)

The wavelet coefficients dm,n are given by dm,n = 〈x(t), ψ̃m,n(t)〉

with ψ̃m,n(t) such that 〈ψ̃m,n(t), ψj,k(t)〉 = δm−j · δn−k. To be
more precise, the set {ψ̃m,n}m∈Z,n∈Z represents the dual basis of
{ψm,n}m∈Z,n∈Z. If {ψm,n}m∈Z,n∈Z is an orthonormal basis of
L2(R), then the two sets {ψm,n}m∈Z,n∈Z and {ψ̃m,n}m∈Z,n∈Z

coincide.
The double sum in (1) clearly shows the multiresolution struc-

ture of the wavelet transform. Since the wavelet function ψ(t) has
zero average, each term dm,n measure a local variation of x(t) at
resolution 2m and the partial sum

xJ+1(t) =
∞∑

m=J+1

∞∑
n=−∞

dm,nψm,n(t) (2)

represents an approximation of x(t) at resolution 2J+1. The com-
pleteness of {ψm,n}m∈Z,n∈Z ensures that by adding details to
xJ+1(t) at finer and finer resolutions we eventually recover x(t).

The approximation function xJ+1(t) can be expressed in terms
of shifted versions of a different function ϕ(t) called the scaling
function. That is

xJ+1(t) =

∞∑
n=−∞

yJ,nϕJ,n(t) (3)
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with the usual assuption that ϕJ,n(t) = 1/2J/2ϕ(t/2J−n). Thus,
by combining (1), (2) and (3), we see that it is possible to represent
any function in L2(R) as a combination of wavelets and scaling
functions or

x(t) =
∞∑

n=−∞

yJ,nϕJ,n(t) +
J∑

m=−∞

∞∑
n=−∞

dm,nψm,n(t). (4)

The scaling coefficients yJ,n tend to measure the local regularity
of x(t) at scale 2J . Therefore, the term

∑
∞

n=−∞
yJ,nϕJ,n(t) rep-

resents a coarse version of x(t) as opposed to the detail version
provided by the wavelets in the last term of (4).

The wavelet function and the scaling function are intimately
related and their link does not reduce to the expansion showed
in (4). Indeed, the scaling function represents the basic element in
the construction of a wavelet basis and many properties of wavelets
can be inferred directly from the scaling function. In particular, an
important and well known property of the wavelet transform is that
of the vanishing moments. We say that a wavelet has K vanishing
moments if∫

∞

−∞

tkψ̃(t)dt = 0, k = 0, 1, ..., K − 1.

This vanishing moments property translates directly into the poly-
nomial approximation property of the scaling function. More pre-
cisely, a wavelet has K vanishing moments if and only if its corre-
sponding scaling function can reproduce polynomials of maximum
degree K − 1, that is,∑

n∈Z

ck,nϕ(t − n) = tk k = 0, 1, ..., K − 1. (5)

In the next section, we will use the properties of the scaling
function to present new sampling results for classes of signal with
a finite rate of innovation. In addition, we will use the link between
wavelets and scaling functions and the multiresolution nature of
wavelets to give an interpretation of these sampling results in terms
of resolution enhancement.

3. WAVELET SAMPLING OF SIGNALS WITH FINITE
RATE OF INNOVATION

In this section, we consider scaling functions of compact support
L, that is, ϕ(t) �= 0 for t ∈ [−L/2, L/2] where L is for simplic-
ity an integer; and we assume that a linear combination of ϕ(t)
can reproduce polynomials of degree K − 1. We concentrate on
one class of signals, namely streams of Diracs. In particular, we
show that the sampling problem reduces to the problem of solving
a system of polynomial equations and that there is a trade-off be-
tween the complexity of this set of equations and the local rate of
innovation of the sampled signal. Eventhough we focus only on
streams of Diracs, most of the results which are valid for this class
of signals can be extended to piecewise polynomial signals.

Consider a stream of Diracs x(t) =
∑

n∈Z
anδ(t − tn) and

t ∈ R and assume that there is at most one Dirac in an interval of
length LT . It follows

Proposition 1 Given is a scaling function ϕ(t) of compact sup-
port L and that can reproduce polynomials of maximum degree
one. An infinite-length stream of Diracs x(t) =

∑
n∈Z

anδ(t −
tn) is uniquely determined from the samples defined by yn =
〈ϕ(t/T − n), x(t)〉 if and only if there is at most one Dirac in
an interval of length LT .

Proof: We first show how to localize a Dirac in an interval of size
T , then we show how to find the exact location and amplitude of
that Dirac.

Let T = 1 and let the support of ϕ(t) be L, assume the signal
is known for t ≤ n − L/2. If there is no Dirac in [n − L/2, n +
L/2] then yn = 0. If there is one Dirac in that interval (call it
akδ(t − tk)), then yn �= 0. Now, consider the inner product
yn−L+1 if there is no Dirac in the interval [n − 3L/2 + 1, n −
L/2] and yn−1 �= 0, then the dirac akδ(t − tk) is in the interval
[n−L/2, n−L/2+1]. If a Dirac was already found in the interval
[n−3L/2+1, −L/2n] (recall that x(t) is known for t ≤ n−L/2)
or if yn−1 = 0 then akδ(t−tk) cannot be in [n−L/2, n−L/2+1],
but must be in [n−L/2+1, n+L/2]. We then need yn−L+2 to see
if akδ(t−tk) is in [n−L/2+1, n−L/2+2]. The process is iter-
ated until we find an interval of size T where we know akδ(t− tk)
is. Assume yn n = 0, 1, ..., L−1 are the inner products that over-
lap this interval. Since the scaling function has compact support L
and there is at most one Dirac in an interval of length L, we are
sure that only L inner products overlap akδ(t − tk) and no other
Diracs are in the same inner products. Therefore using partition of
unity and equation (5), we have that

ak =
L−1∑
n=0

yn (6)

and
tk = (

∑
n

c1,nyn)/ak (7)

where the coefficients c1,n are known and given by (5).
�

In equations (6) and (7), we have used the fact that, in the vicinity
of tk, the scaling function is reproducing polynomial of degree
zero and one respectively. In fact, we have that

∑L−1

n=0
yn = 〈akδ(t − tk),

∑L−1

n=0
ϕ(t − n)〉

=
∫

∞

−∞
akδ(t − tk)(

∑L−1

n=0
ϕ(t − n))dt

= ak

∑L−1

n=0
ϕ(tk − n) = ak

(8)

where in the last equality we have used the property that the sum
of the translated versions of ϕ(t) is constant and equal to 1 in tk.
Likewise, we have that

L−1∑
n=0

c1,nyn = ak

L−1∑
n=0

c1,nϕ(tk − n) = aktk (9)

where in the last equality we used the polynomial approximation
property (5). Figure 1 illustrates this result with a simple example.

Finally, it is worth pointing out that the scaling functions that
generate some of the most commonly used wavelets such as Daubechies
wavelets and Splines, satisfy the hypotheses of the theorem and
can, therefore, be used to sample streams of Diracs.

The proposition above has shown conditions under which we
can sample streams of Diracs. The reconstruction algorithm relies
on the ability of the scaling functions to reproduce polynomials of
degree one. However, we need to assume that there is at most one
Dirac in an interval of size LT . We can loosen this condition by
assuming that ϕ(t) can reproduce higher order polynomials. In
particular we have that:
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Fig. 1. Illustration of the sampling result of Proposition 1 using B-
splines of degree two. In this case L is equal to three and only three
translated versions of the scaling function overlap the Dirac. The
three dashed functions in part (a) and (b) are the three B-splines
overlapping the Dirac. In part (b), they are opportunely weighted
to reproduce a degree-one polynomial. The two solid-line func-
tions in (a) and (b) represents ϕ(t) + ϕ(t − 1) + ϕ(t − 2) and
c1,0ϕ(t) + c1,1ϕ(t − 1) + c1,2ϕ(t − 2) respectively. Because of
the polynomial reproduction property of the scaling function, the
following is true: y0 + y1 + y2 =

∫
∞

−∞
akδ(t− tk)(ϕ(t)+ϕ(t−

1) + ϕ(t − 2))dt = ak where in the last equality, we have used
the fact that around tk the sum of the scaling functions is constant
and equal to one. Similarly, c1,0y0 + c1,1y1 + c1,2y2 = aktk as
illustrated in Figure 1(b).

Proposition 2 Given is a scaling function ϕ(t) that can reproduce
polynomials of maximum degree three and of compact support L.
An infinite-length stream of Diracs x(t) =

∑
n∈Z

anδ(t − tn) is
uniquely determined from the samples defined by yn = 〈ϕ(t/T −
n), x(t)〉, if and only if there are at most two Diracs in an interval
of length 2LT .

Proof: In a way similar to the one presented in Proposition 1, we
can find the interval that contains the two Diracs (call them a0δ(t−
t0) + a1δ(t − t1) with the assumption that t0 ≤ t1). Assume yn

n = 0, 1, ..., L′ are the only inner products that overlap the two
Diracs. The following is true

∑
n

yn = a0 + a1 (10)

∑
n

c1,nyn = a0t0 + a1t1 (11)

∑
n

c2,nyn = a0t
2
0 + a1t

2
1 (12)

∑
n

c3,nyn = a0t
3
0 + a1t

3
1 (13)

This is a system of four polynomial equations in four unknowns
(a0, a1, t0, t1), we need to show that it admits only one solution.

It is easy to see that after few manipulations this system can
be written in triangular form as follows

s0t
2
1 − s0kt1 + s1k − s2 = 0, (14)

t0 = k − t1, (15)

a1 = (s1 − s0t0)/(t1 − t0), (16)

a0 = s0 − a1 (17)

with s0 =
∑

n yn, s1 =
∑

n c1,nyn, s2 =
∑

n c2,nyn, s3 =∑
n c3,nyn and k = (s1s2 − s0s3)/(s1 − s0s2). Thus, we can

solve equation (14) in t0 and then substitute the values of t0 in the
other equations to find the exact values of t1, a1, a0. Equation (14)
has two solutions, therefore the whole system has apparently two
possible sets of solutions. However, notice that the role of t0 and t1
in equations (14) and (15) can be exchanged. This means that, the
two pairs of solutions that we obtain for t0 and t1 are symmetric.
That is, if t0 admits solutions α and β, than the corresponding
solutions for t1 are β and α respectively. Therefore, following our
convention that t0 ≤ t1 and assuming α ≤ β, we have that t0 = α
and t1 = β and the complete system admits only one solution.

�

Finally, it is also possible to show that 1

Proposition 3 An infinite-length stream of fixed amplitude Diracs
x(t) =

∑
n∈Z

δ(t − tn) is uniquely determined from the samples
defined by yn = 〈ϕ(t/T − n), x(t)〉, where ϕ(t) is a scaling
function of compact support L and that can reproduce polynomials
of maximum degree K, if and only if there are at most K Diracs
in an interval of length KLT .

Before concluding this section, we would like to highlight how
to extend these sampling results to the case of piecewise polyno-
mial signals. By differentiation, a piecewise polynomial signal can
be reduced to a stream of Diracs. Thus, using integration by parts,
one can sample piecewise polynomial signals using derivative of
the scaling functions. We omit this proof for lack of space.

4. SAMPLING AND RESOLUTION ENHANCEMENT
WITH FOOTPRINTS

In this section we investigate the use of footprints to reconstruct or
to increase the resolution of a sampled signal. Wavelet footprints
were introduced in [2].

We have seen that a signal x(t) ∈ L2(R) can be decomposed
in terms of wavelets and scaling functions or

x(t) =

∞∑
n=−∞

yJ,nϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dm,nψm,n(t). (18)

Now, assume that x(t) and ϕ(t) satisfies the hypotheses of the the-
orems in Section 3. That is, x(t) is a stream of Diracs or a piece-
wise polynomial signal with a finite rate of innovation, and ϕ(t)
is a compact support scaling function that can reproduce poly-
nomials of a certain degree. Then the sampling theorems of the
previous section ensure that, for a proper choice of J , the inner
products yJ,n of equation (18) are sufficient to characterize x(t)
or, in other words, that the finite resolution version xJ+1(t) =

1We omit this proof due to the lack of space.
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∑
∞

n=−∞
yJ,nϕJ,n(t) is sufficient to reconstruct the signal exactly.

This means that by knowing x(t) at a finite resolution, we can in-
fer the value of the wavelet coefficients dm,n with m ≤ J and,
therefore, arbitrary increase the resolution of our approximation to
eventually recover the original signal.

These sampling results can also by interpreted in terms of foot-
prints. Consider, for instance, the case where x(t) is a stream of
Diracs, that is, x(t) =

∑
k∈Z

akδ(t − tk). We know that we can
write x(t) as

x(t) =
∞∑

n=−∞

yJ,nϕJ,n(t) +
∑
k∈Z

bkftk(t).

where ftk (t) is the footprint related to the Dirac at location tk. As-
sume that we observe the finite resolution version xJ0+1(t). The
representation of xJ0+1 in terms of footprints is given by

xJ0+1(t) =

∞∑
n=−∞

yJ,nϕJ,n(t) +

K−1∑
k=0

bkf̂tk (t)

with f̂tk representing the finite resolution version of ftk . If x(t)
satisfies the hypotheses of propositions in Section 3, then we can
reconstruct the infinite resolution version of f̂tk (t) by comparing it
with all the possible finite resolution footprints f̂tx(t) at arbitrary
location tx and by choosing the one that maximizes 〈f̂tk , f̂tx〉.
More precisely, assume that tx is close enough to tk, then

〈xJ0+1(t), f̂tx(t)〉 = bk〈f̂tk , f̂tx〉

and, it is possible to show that the maximum of 〈f̂tk , f̂tx〉 is achieved
only when tx = tk.

In practice, it is not feasible to compute all the possible inner
products 〈f̂tk , f̂tx 〉 since tx is real. However, if one is only inter-
ested in enhancing the resolution of xJ0+1(t), then one has to test
only a limited number of footprints. Assume, for instance, that the
new resolution one wants to achieve is 2J1 with J1 < J0, then the
footprints that we need to consider are only at discrete locations
tn = n · 2J1 with n ∈ Z and the footprint f̂tn(t) closest to the
actual value tk gives the highest inner product 〈f̂tk , f̂tn〉 .

An example of the algorithm is illustrated in Figure 2. We
consider a periodic piecewise linear signal with period τ = 128
(Figure 2(a)). The signal is sampled with a Daubechies filter with
two vanishing moments. The coarse approximation of the signal
(what we have called xJ0+1(t)) is shown in Figure 2(b). In this
case J0 = 4. The reconstruction with footprints of x(t) is shown
in Figure 2(c) and is exact to machine precision.2

5. CONCLUSIONS

In this paper, we have shown that it is possible to sample some
classes of signals using a wavelet sampling kernel. We have then
developed a new resolution enhancement algorithm based on these
sampling results and on the notion of footprints. Future research
will focus on the generalization of these sampling theorems to the
case of two-dimensional signals and on the design of new algo-
rithms for image resolution enhancement.

2Preliminary results seem also to indicate that this algorithm is quite
resilient to noise. A more precise analysis of this resilience is under inves-
tigation.
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Fig. 2. Illustration of the reconstruction algorithm based on foot-
prints. (a) Original discrete-time piecewise linear signal. In this
case the original signal has 128 samples. (b) Coarse version of the
signal using Daubechies filters with two vanishing moments. This
coarse version is obtained taking only 16 samples. This means
J0 = 4. (c) Reconstruction with footprints of the original signal
using the 16 samples of the coarse version.
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