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ABSTRACT
In this study, we propose a new complex wavelet, the RI-
spline wavelet, which is constructed using spline wavelets
for dual-tree DWT. In the RI-spline wavelet, the real and
imaginary components become an approximate Hilbert pair
to each other. Then we propose a new dual-tree algorithm
which uses an interpolation method for providing a half-
sample-delay between the two filters of the trees. Finally,
we experimentally show that the translation invariance, which
can not be obtained by the ordinary DWT, is obtained by RI-
spline wavelet.

1. INTRODUCTION

The Discrete Wavelet Transform (DWT) is a powerful signal-
processing tool, for which a fast algorithm based on the
Multi–Resolution Analysis (MRA) algorithm is proposed
by Mallat [1]. However, the DWT has a disadvantage that
the transformed result is not translation invariant. This means
that shifts of the input-signal generate undesirable changes
in the wavelet coefficients. So the DWT can not catch fea-
tures of the signals exactly.

In order to overcome this problem, Kingsbury [2] pro-
posed a complex wavelet transform, the Dual-Tree Wavelet
Transform (DTWT), which realizes approximately transla-
tion invariance. In the two trees of the DTWT, a pair of
filter banks, which is a Hilbert pair, is used. Thus approxi-
mate translation invariance can be obtained. In the DTWT,
in order to get uniform intervals between samples from the
two trees in or below level-1, the filters in one tree should
provide a half-sample-delay (at each filter’s input rate) from
those in the other tree. This realization of a half-sample-
delay is very difficult. For this, Kingsbury first provided the
delay of one tree’s filter which are one sample offset from
another tree’s filter in level -1. However, this means that in
level -1, that is, the half frequency range, the wavelet coeffi-
cients can not be used for complex analysis. In addition, the
design of Kingsbury’s filter banks is complicated because it
requires an iterative optimization over the space of perfect-
reconstruction filter-banks, although Selesnick [3] proposed
a new method which may unburden this problem.

Fernandes et al. [4] proposed a new framework for the
implementation of Complex Wavelet Transforms (CWTs).
In this framework, at first the Hilbert Transform is applied
to the input signal then real and imaginary pair of the signal
can be obtained, for each of which the same DWT is ap-
plied. Thus we get the real and imaginary part of the CWTs
results. This approach is very simple and excellent since it
can use a current DWT and requires neither designing new
wavelets associated with filter banks nor providing a half-
sample-delay between the two trees. However, due to using
the Hilbert Transform, the computational cost increases by
twice the FFT than the DTWT.

In this study, in order to overcome the fore-mentioned
disadvantage of Kingsbury’s DTWT without increasing the
computational cost, we propose a new complex wavelet, the
Real–Imaginary Spline Wavelet (RI-Spline wavelet), which
is constructed using spline wavelets for the dual-tree DWT.
In the dual-tree DWT using the RI-Spline wavelet, we real-
ize a half-sample-delay between the two trees using interpo-
lation. Using the RI-Spline wavelet, complex analysis can
be carried out coherently in all analysis levels. Finally, we
experimentally show how translation invariance is obtained
by the DTWT using the RI-spline wavelet.

2. SPLINE WAVELET AND ITS CHARACTERICS

The Spline wavelet[5] is defined as follows using an integer
rank m which is greater than 2.

ψm(t) =
∑

n

qnNm(2t − n), n = 0, · · · , 3m − 2, (1)

where Spline scaling function Nm(t) is computed using Eq. (2),
and the coefficient qn are computed using Eq. (3). Here-
after, we call the Spline function used for a scaling function
as Spline scaling function.

Nm(t) =
t

m − 1
Nm−1(t) +

m − t

m − 1
Nm−1(t− 1), t ∈ R,

(2)

qn =
(−1)n

2m−1

m∑
l=0

(m
l )N2m(n+1− l), n = 0, · · · , 3m− 2.

(3)
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(a) m=4,3 RI–Spline wavelet

(b)Fourier transform of m=4,3 RI–Spline wavelet

Fig. 1. Example of the m=4,3 RI-Spline wavelet and its
Fourier transform.

The Spline wavelet has an anti–symmetric property when
m is odd number (mo), and has a symmetric property when
m is an even number (me). From these properties, the Spline
wavelets have a generalized linear phase, and the distortion
of the reconstructed signal can be minimized. The way of
computing decomposition and reconstruction sequences is
explained in reference [5].

Generally, Mallat’s fast algorithm for DWT starts from
level 0, where the signal f(t) is approximated as f0(t), and
the signal is decomposed by the following formula:

f0(t) =
∑

k

c0
kφ(t − k), k ∈ Z, (4)

In this equation, φ(t) means a scaling function. Usually,
in the Spline wavelet, as the scaling function Nm(t) is not
orthogonal, the signal f(t) is approximated as f0(t) using
the following interpolation.

f0(t) =
∑

k

f(k)Lm(t − k), k ∈ Z, (5)

The Fundamental Spline Lm(t) of the rank m is defined as

Lm(t) =
∑

k

βm
k Nm(t +

m

2
− k), k ∈ Z, (6)

which has the interpolation property Lm(k)=δk,0, k ∈ Z.
Using Eqs. (5) and (6), we obtain the following equations.

f0(t) =
∑

k

f(k)Lm(t − k), k ∈ Z (7)

=

⎧⎪⎪⎨
⎪⎪⎩

∑
k

c0
kNm(t − k) m = me, k ∈ Z

∑
k

c0
kNm(t +

1
2
− k) m = mo, k ∈ Z

c0
k =

⎧⎪⎪⎨
⎪⎪⎩

∑
l

f(l)βm
k+m/2−l m = me, l ∈ Z

∑
l

f(l)βm
k+(m−1)/2−l m = mo, l ∈ Z

(8)
From Eq. (7) and Eq. (8), the following conclusions can be
obtained. When m is me, the f0(x) becomes a standard
form expressed as Eq. (4). However, when m is mo, a half-
sample-delay from the case when m is me occurs in c0

k.

3. NEW DUAL-TREE WAVELET TRANSFORM
USING RI-SPLINE WAVELET

3.1. The Construction of RI-Spline Wavelet

The RI-Spline wavelet, which is composed of a pair of Spline
wavelets, can be described as the complex wavelets whose
real component is the me Spline wavelets and whose imagi-
nary component is the mo Spline wavelets. This means that
the real component is symmetric and the imaginary compo-
nent is anti-symmetric.

We use the following notations:

ψR(t) the real component of the RI-Spline wavelet

ψI(t) the imaginary component of the RI-Spline wavelet

NR(t) the real component of the RI-Spline scaling function

NI((t) the imaginary component of the RI-Spline scaling
function

ψme(t) the me Spline wavelets

ψmo(t) the mo Spline wavelets

Nme
(t) the me Spline scaling function

Nmo(t) the mo Spline scaling function

Using these notations we define the RI-Spline wavelet and
its scaling functions as follows:

ψ(t) = ψR(t) + jψI(t),
ψR(t) = (−1)(me−2)/2||ψme ||−1ψme(t + me − 1),
ψI(t) = (−1)(mo+1)/2||ψmo ||−1ψmo(t + mo − 1),

(9)
NR(t) = Nme(t − me/2),
NI(t) = Nmo(t − (mo − 1)/2), (10)

where Eqs. (9) and (10) imply the phase adjustment. The
normalization of the wavelets is conducted as follows:

〈ψR, ψI〉 = 0,
||ψR|| = ||ψI || = 1.

(11)

Figure 1 shows an example of the RI-Spline wavelet,
where Fig. 1(a) is the m=4,3 (me=4, mo=3) RI-spline wavelet
and (b) is its Fourier transform. From Fig. 1(b) it is clear that
the real and imaginary components of the RI-Spline wavelet
constitute an approximate Hilbert pair, which is valid for the
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case m=6,5, m=4,5 and m=6,7 and so on. Therefore, RI-
Spline wavelet can be used as an alternate mother wavelet
for the DTWT.

We denote the decomposition sequences of ψR(t) as
{aR

k } and {bR
k }, and those of ψI(t) as {aI

k} and {bI
k}. We

also denote the decomposition sequences of ψme(t) as {ame

k }
and {bme

k }, and those of ψmo(t) as {amo

k } and {bmo

k }. Us-
ing these notations the decomposition sequences of the RI-
Spline wavelet are expressed as follows:

aR
k =

√
2ame

k+me/2,

bR
k = (−1)me/2+1||ψme ||

√
2bme

k+3me/2−2,
(12)

aI
k =

√
2amo

k+(mo−1)/2,

bI
k = (−1)(mo+1)/2||ψmo ||

√
2bmo

k+3(mo−1)/2,
(13)

We denote the reconstruction sequences of ψR(t) as {pR
k }

and {qR
k }, and those of ψI(t) as {pI

k} and {qI
k}. We also de-

note the reconstruction sequences of the me Spline wavelet
as {pme

k } and {qme

k }, and those of the m=mo Spline wavelet
as {pmo

k } and {qmo

k }. Using these notations the reconstruc-
tion sequences of the RI-Spline wavelet are expressed as
follows:

pR
k = (

√
2)−1pme

k+me/2,

qR
k = (−1)me/2+1(||ψme ||

√
2)−1qme

k+3me/2−2,

(14)
pI

k = (
√

2)−1pmo

k+(mo−1)/2,

qI
k = (−1)(mo+1)/2(||ψmo

||√2)−1qmo

k+3(mo−1)/2,

(15)
In Eqs. (12), (13), (14) and (15), we omit the way of nor-
malization of wavelets in each level.

3.2. Realizing a Half-Sample-Delay using Interpolation

As shown in Sec. 1, in the DTWT the filters must provide
a half-sample-delay between the two trees. Fortunately, as
shown in Sec.2, this half-sample-delay can be easily real-
ized in the process of interpolation calculation when the me

and mo Spline scaling functions are used. However, the co-
efficient βm

k in Eq. (6) is very difficult to calculate in the
case m is mo[5]. In order to calculate this coefficient, we
propose a new synthetic-interpolation function, which is de-
fined as follows:

Ns(t) =
∑

k

KR
k NR(t − k) +

∑
k

KI
kNI(t − k), k ∈ Z,

(16)
In Eq.(16), it is necessary for Ns(t) to be symmetric around
the origin. It is also necessary for the energy of the input sig-
nal to be evenly shared in the real component

∑
KR

k NR(t−
k) and the imaginary component

∑
KI

kNI(t − k) except
near the Nyquist Frequency. The sequences KR

k and KI
k

are designed so that they satisfy these conditions, and then
the interpolation is computed as follows:

Ls(t) =
∑

k

βs
kNs(t − k), Ls(k) = δk,0, k ∈ Z. (17)

By the sequence βs
k satisfying Eq. (17), we have

f0(t) =
∑

l

c0
l Ns(t−l), c0

l =
∑

l

f(l)βs
k−l, l ∈ Z, (18)

and

c0
R,k =

∑
l

c0
l K

R
k−l, c0

I,k =
∑

l

c0
l K

I
k−l, l ∈ Z, (19)

where, f0(t) is the approximate input signal. Finally, we
obtain the interpolation as follows:

f0(t) =
∑

k

c0
R,kNR(t − k) +

∑
k

c0
I,kNI(t − k), k ∈ Z

(20)
From Eq. (20), it is clear that both

∑
k c0

R,kNR(t − k) and∑
k c0

I,kNI(t − k) terms of Eq. (20) become the standard
forms expressed as the Eq. (4).

3.3. Coherent Dual-Tree Algorithm

We propose the coherent Dual-Tree Algorithm shown as
Fig. 2. In this algorithm, the real sequences c0

R,k and the
imaginary sequences c0

I,k are first calculated from f0(t) by
the interpolation expressed as Eqs. (18) and (19). Then they
are decomposed ordinarily by Eqs. (21) and (22):

cj−1
R,k =

∑
l

aR
l−2kcj

R,l, dj−1
R,k =

∑
l

bR
l−2kcj

R,l, l ∈ Z

(21)
cj−1
I,k =

∑
l a

I
l−2kcj

I,l, dj−1
I,k =

∑
l b

I
l−2kcj

I,l, l ∈ Z
(22)

For reconstruction, the reconstruction tree shown in Fig. 2(b)
can be applied. The inverse transformation can be calcu-
lated by the next equations:

cj
R,k =

∑
l

(pR
k−2lc

j−1
R,l + qR

k−2ld
j−1
R,l ), l ∈ Z (23)

cj
I,k =

∑
l

(pI
k−2lc

j−1
I,l + qI

k−2ld
j−1
I,l ), l ∈ Z (24)

By Eq. (11), we have

〈ψj
R,k, ψj

I,k〉 = 0,

||ψj
R,k|| = ||ψj

I,k|| = 1,
(25)

The norm of the synthetic wavelet can be computed as fol-
lows:

||dj
R,kψj

R,k + dj
I,kψj

I,k|| =
√

(dj
R,k)2 + (dj

I,k)2 (26)
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Fig. 2. New Dual–Tree Algorithm.

As shown above, our Dual-Tree Algorithm is very sim-
ple and it is not necessary to provide the delay of one tree’s
filter which is one sample offset from another tree’s filter
in level -1. Therefore, complex analysis can be carried out
coherently in all analysis levels.

4. VERIFYING TRANSLATION INVARIANCE BY
EXPERIMENTS

Figure 3 shows the change of the energy in each level that
is obtained by shifting one sample of an impulse signal’s
position, where (a) is obtained by our DTWT using the RI-
Spline wavelet, (b) and (c) are obtained by the current DWT
using Daubechise 8 (D8) and m=4 Spline (S4) wavelets. As
is shown in Fig. 3, the energy in each level by using the
RI-Spline wavelet is very stable, and almost is not influ-
enced by shifting. By comparison with RI-Spline wavelet,
the energy obtained by the S4 and D8 wavelets are greatly
changed. From these experiments, we can conclude that our
DTWT using the RI-Spline wavelet solves the translation
variance problem of DWT.

5. CONCLUSIONS

In this study, we proposed a new complex wavelet, the DTWT
using the RI-spline wavelet, for which we also proposed
a coherent Dual–Tree Algorithm using the interpolation to
provide a half-sample-delay between the two trees. Finally
we experimentally showed that translation invariance can be
obtained by our method. The results obtained can be sum-
marized as follows:

1)A new complex wavelet, the RI- Spline Wavelet which
is constructed simply by two spline wavelets which consti-
tute an approximate Hilbert pair, was proposed. It is useful
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Fig. 3. Change of the impulse’s Energy obtained by differ-
ent impulse position.

for solving the translation variance problem of the DWT,
without so increasing the computational cost much. The RI-
spline wavelet is simple and we do not need a complicated
process for designing new filters for DTWT.

2)The interpolation method, which includes the calcu-
lation of coefficients c0

k from the signal f(t), is useful to
realize a half-sample-delay between the two trees. There-
fore, complex analysis can be carried out coherently from
level -1.
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