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Abstract— This paper presents a new technique for de-
signing pairs of filter banks whose corresponding wavelet
function are approximate Hilbert transform of each other.
The filters have exact linear phase which yields biorthogo-
nal wavelets with exact symmetry. The technique is based
on matching the frequency response of a given odd-length
filter bank with an even-length filter bank. The class of
EBFB (Even-length Bernstein Filter Bank) is utilized in
the matching design. The EBFB has perfect reconstruc-
tion and vanishing moments properties structurally im-
posed and this simplifies the design process. The design
is achieved through a non-iterative least squares method.

I. INTRODUCTION

It is almost two decades since the pioneering work of
Daubechies and Mallat showed the relationship between
multirate filter banks and wavelet. They introduced the
dyadic DWT (Discrete Wavelet Transform) which has
served the engineering and scientific community well as
an important signal processing tool in various applica-
tions. The testament to its success is seen in its adoption
in international standards like the JPEG2000 for image
compression. The DWT however is not without its dis-
advantages and limitations and this has lead to the de-
velopment of transforms that are extensions or variants
of the DWT. One of the main disadvantage of the DWT
is its shift-variant property and this is due to the in-
herent multirate nature of the transform. This has lead
some researchers to develop over-complete transforms to
reduce the degree of shift-variancy.

Recently Selesnick [1],[2] introduced the notion of a
pair of filter banks where the equivalent wavelet of one
bank is the Hilbert transform of the wavelet of the other
bank (and will be referred to as a Hilbert-Pair). The use
of a Hilbert-Pair for transient detection was proposed by
Abry and Flandrin [3] and for waveform encoding by Oz-
turk [4]. The dual-tree complex wavelets of Kingsbury
[5] which has approximate shift-invariance is also related
to the Hilbert-Pair.

The design of approximate Hilbert-Pairs was ad-
dressed in [1],[2]. Only orthogonal wavelets were con-
sidered in [1] but both orthogonal and biorthogonal
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wavelets were considered in [2]. None of the wavelets
in [1] and [2] however have exact symmetry although
it was advocated that symmetry is desirable for bet-
ter directional selectivity [2]. Some of the biorthogonal
wavelets in [2] however have approximate symmetry but
exact symmetry is unattainable using the design tech-
nique proposed therein. In this work we present an al-
ternate technique that utilizes the EBFB (Even-length
Bernstein Filter Bank) [6] and yields exactly symmetric
wavelets. The technique is simple to apply and essen-
tially involves solving a linear least squares problem.

II. HILBERT TRANSFORM WAVELET PAIRS

A standard 2-channel filter bank is defined by four
filters:
1. Low-pass: Ho(z) (analysis) and Fy(z) (synthesis).
2. High-pass: H;(z) (analysis) and F}(z) (synthesis).
Perfect reconstruction is achieved if the following equa-
tions are satisfied: (i) Hy(z) = 2 tHo(—2); (ii) Fi(2) =
2Fy(—z) and (iii) Ho(2)Fo(z) + Ho(—2)Fy(—2z) = 1. By
denoting the coefficients of the filters by lower case let-
ters; eg. fo(n) for Fy(z), ie. Fo(z) = > ,, fo(n)z™"; the
synthesis scaling function ¢(t) and synthesis wavelet (%)
are given implicitly by the following two-scale equations:

o(t) = Fi(l) OUCECEE
b(t) = Fi(l) IUCECER

Similar equations exist relating the analysis scaling func-
tion ¢(t) and the analysis wavelet 1)(t) to the coefficients
of the analysis filters.

A Hilbert Pair is made up of two filter banks that
are related to each other. The filters in one bank is
denoted by the superscript h, ie. (HE, H', F}, F}'), and
the other banks’ filter is denoted by the superscript g, ie.
(HY,H{,Fj,Fy). The corresponding scaling functions
and wavelets are also denoted by the same superscripts,
eg. " (t) for bank h and 9 (t) for bank g. Suppose it is
required that 9 (t) is the }}Ililbert transform of 1" (t), ie.

_f —j¥"w) for w>0
V) = { jUM(w) for w<O0 (1)
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where ¥"(w) and ¥9(w) are the Fourier transform of
" (t) and 19 (t) respectively. It was shown by Selesnick
[1] that a sufficient condition for (1) is a relationship
between the low-pass filters of the two banks:

F (@) = e /2 (w) 2)
(Note the slight abuse of notation, ie. F§ (w) = F§ (e/)).
Condition (2) was shown recently in [7] to be also nec-
essary. Note that equations (1) and (2) are for the syn-
thesis side of the banks and there are similar equations
at the analysis side.

Equation (2) implies that the impulse response fJ(n)
is a half-sampled delayed version of f&(n). This cannot
be satisfied exactly using FIR filters so an approxima-
tion, ie. F§(w) ~ e~ 7“/2 Fl(w), is used in actual designs.
Previous design approaches are:

1. Minimize the upsampled error E(w) = Fj(2w) —
e 19 Fl(2w) at the vicinity of w = 0 [1]. Specifically
E(w) and a certain prescribed number of its derivatives
at w = 0 are set to zero. The technique requires the
solution of non-linear equations and was achieved using
Grobner bases in [1].
2. Using an allpass filter that approximates a half-
sample delay, ie. A(z) ~ 2z /2 to assist in the con-
struction of the filters [2]. The filters constructed are
related as follows:

Fi (w) = A(w) ' (w) (3)
The technique in [2] is essentially a spectral factorization
approach and no explicit frequency domain criterion is
imposed in the designs.

III. MATCHING TECHNIQUE OF DESIGN

Equation (2) is a complex valued equation and with
the technique in [2], (ie. using (3)), the magnitude part
of the equation is exactly satisfied, ie. |F§ (w)| = |F(w)]-
The approximation is then in the phase and the approx-
imation quality will depend on the type of all-pass filter
A(z) used.

In this paper a complementary approach is adopted
which is described next. The filter bank h comprise
of odd-length linear phase filters and bank g comprise
of even-length linear phase filters. For convenience the
center of symmetries of the filters’ impulse response is
chosen to be as close as possible to the origin. The filters
frequency response can then by written as [8]

Fl(w) )+2 Z f(n) cos(nw) (4)
n#0
Fl(w) = e_jw/QFg (W)
= e v/ Qng cos((n — Hw)  (5)

Both F(w) and Fy p(w) are real valued functions and
are essentially the magnitude response of the filters.
With (4) and (5) its readily seen that /F§(w) = —% +
/F{(w) (provided Ff'(w) and F§ p(w) have the same

sign), ie. the phase part of (2) is exactly satisfied. The
approximation is then in the amplitude, ie.

Ff p(w) = Fy (w) (6)
To design a Hilbert pair the odd-length filter bank h
is chosen or constructed first. The even-length filter in
bank ¢ is then designed to match the filter in bank h, ie.
eqn. (6). In this paper the class of EBFB (Even-length
Bernstein Filter Bank) is used for bank g and is briefly
discuss next (more details in [6]).

A. Even Length Bernstein Filter Bank

The key component to the EBFB is the Parametric
Bernstein Polynomial which is defined as:

Zf (7 )ea-a @
where N is odd, a = [ %)
f(i):{ 1—a; 0<z< L(N-1)
| an-i (N+1)§i§N
First the following two Bernstein polynomial with differ-
ent parameters are defined: B;(z) = By(z;a/ap = 0)

Oé(N 1)/2 ]T and

and Bs(z) = By (z; 8). Next the following functions are
defined:

H(z) = (1-2)""*Bi(x)

F(z) = (1-2)"?[Bi(z) + 2Bs(x)

— 2Bi(z)Bx() |
Finally the low-pass filters of the EBFB are given by
Hj(z) = 2'PH(;2(1-271)) (8)

F(2) = 2 'Y?F((1-271)? (9)
The advantages of the EBFB are that perfect recon-
struction and vanishing moments are structurally im-
posed. The desired degree of vanishing moments for
H{(z), (2L + 1), can be achieved by setting a; = 0
for i = 0,...,Lyg. The degree of vanishing moments
for Fy(z) is (2min(Ly,Lr) + 3) where 8; = 0 for
1 =0,...,Lr. The optimization that needs to be car-
ried out on the remaining non-zero free parameters is an
unconstrained one.
To facilitate the design process the following change

of variable
y=(1- x)1/2 = cos (g) (10)

is applied to the filter functions [6]. Using the variable
y, the filter function Hg( ) can be written as [6]:

H(y) )= D k'

where K (y) and le(y) are pofynomlal functions in y
and are independent of «;; and the filter function Fy(2)
can be written as:

EPILA

FI(y)
where K (y) and le(y) are polynomlal in y and are
independent of 3; but linearly dependent on «;. Expres-
sions for K7, k', KT and k[ are available in [6].
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B. Least Squares Design

Once bank h has been determined, apply the change
of variable (10) to its low-pass filters: HI(w) — H"(y)
and Fl'(w) — F"(y). Note that H"(y) and F"(y) are
polynomials in y. To match filter Hf to H¥ the following
objective function is used:

B - / (H?(y) — H (4))2 dy
= KH(y)—Hh(y)—ZkfI(y)az> dy
0 l

As can be clearly seen E is a quadratic function of the
free parameters a; and its minimization requires the so-
lution of simple linear equations. The coefficients of the
linear equations can be computed analytically because
all functions involved are polynomial. Once the «; have
been obtained, the §; can be obtained using a similar
procedure by matching Fj to Fy'.

IV. DESIGN EXAMPLES

Two well known odd-length filter banks are considered
here and the design of the corresponding matching even-
length filter bank is presented.

Example 1: the odd-length filter bank is the Daubechies
5/7 pair [9],[10] which is almost orthogonal. For the
EBFB, N = 3 and M = 1, and this yields filters of
length 6 and 10. We choose minimum values for Ly =
0 (ap = 0) and Ly = —1 and this gives one zero (at
z = —1) each for the length 6 and 10 filters. The length
6 (10) filter is matched to the length 5 (7) filter. The
optimized values of the free parameters are

o = 0.1385, 1 =0.1501

Figure 1 shows the wavelets from the odd- and even-
length filter banks. Figure 2 shows the spectrums of
¥"(t) and (¥"(t) + j¥?(1)).

Example 2: the odd-length filter bank is the celebrated
Daubechies 9/7 pair [9],[10] which is employed in the
JPEG2000 standard. For the EBFB, N = M = 5, and
this yields filters of length 10 and 22. We choose Ly = 0
(g = 0) and Ly = 0 (8o = 0) and this gives one zero
(at z = —1) for the length 10 filter and 3 zeros for the
length 22 filter. The length 10 (22) filter is matched to
the length 7 (9) filter. The optimized values of the free
parameters are

oy = 0.0025, ay =0.0253, B; =0.1005, B, = 1.0811
Figure 3 shows the wavelets from the odd- and even-
length filter banks. Figure 4 shows the spectrums of

P (t) and (" (t) + jp9(t)).
A. Discussion

It is clearly seen that all the wavelets are symmetrical
and each Hilbert pair of wavelets have opposite types of

symmetry, ie. mirror-symmetric / anti-symmetric. In
comparison the almost symmetric pair of wavelets in
[2] have only one type of symmetry, namely mirror-
symmetric.

The spectrum |¥"(w) + j¥9(w)| is essentially one-
sided and matches well the spectrum |¥"(w)| for w >
0. Plots of /gy for both examples (not shown here)
verify that the phase part of equ. (1) is satisfied, ie.
Z$—z(w) = —j sign(w), except for a small number of fre-
quency points. This means that ())"(¢) + j49(t)) is an
approximate analytic version of 1" (t) and shows that a
reasonably good approximation to the Hilbert transform
is achieved.

V. SUMMARY

The design of wavelet pairs that are related through
the Hilbert transform has been presented. The wavelets
are biorthogonal and have exact symmetry.  The
wavelets in each Hilbert pair have opposite symmetries.
The design is achieved by matching an even-length filter
bank to a given odd-length filter bank. The Even-length
Bernstein Filter Bank was utilized for the even bank and
this simplified the design process. A least squares for-
mulation was proposed for the design and this required
the solution of simple linear equations. Examples were
presented which showed that approximate Hilbert pairs
can be designed with ease.

Further research in this direction includes:

1. Using a different error norm (to the error squared
norm) for the optimization, eg. minimax error.

2. Matching an odd-length filter bank to a predeter-
mined even-length filter bank.
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Fig. 1.  Wavelets from example 1. Mirror-symmetric wavelets
from odd-length filter bank and anti-symmetric wavelets from
even-length filter bank.
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Fig. 2. Wavelet spectrum from example 1. Dotted line - real

wavelet from odd-length filter bank (multiplied by 2), ie.
2| (w)|. Solid line - approximate complex analytic wavelet,
ie. [Wh(w) + jW9(w)
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Fig. 3.  Wavelets from example 2. Mirror-symmetric wavelets

from odd-length filter bank and anti-symmetric wavelets from

even-length filter bank.
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Wavelet spectrum from example 2. Dotted line - real
wavelet from odd-length filter bank (multiplied by 2), ie.
2|W"(w)|. Solid line - approximate complex analytic wavelet,
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