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ABSTRACT

The denoising of a natural image corrupted by Gaussian
noise is a classical problem in signal or image processing.
Donoho and his coworkers at Stanford pioneered a wavelet
denoising scheme by thresholding the wavelet coefficients
arising from the standard discrete wavelet transform. This
work has been widely used in science and engineering ap-
plications. However, this denoising scheme tends to kill too
many wavelet coefficients that might contain useful image
information. In this paper, we propose one wavelet image
thresholding scheme by incorporating neighbouring coef-
ficients, namely NeighShrink. This approach is valid be-
cause a large wavelet coefficient will probably have large
wavelet coefficients as its neighbours. Experimental results
show that NeighShrink is better than the Wiener filter and
the conventional wavelet denoising approaches: VisuShrink
and SUREShrink. We also investigate different neighbour-
hood sizes and find that a size of 3 X 3 is the best among all
window sizes.

1. INTRODUCTION

Wavelet transforms have been successfully used in many
scientific fields such as image compression, image denois-
ing, signal processing, computer graphics, and pattern recog-
nition, to name only a few. Donoho and his coworkers pi-
oneered a wavelet denoising scheme by using soft thresh-
olding and hard thresholding. This can be summarized as
follows. Let A(4, j) be the noise-free image and B(i, j) the
image corrupted with white noise Z(i, ), i.e., B(i,j) =
A(i,j) + 0Z(i,j), where Z(i,j) has normal distribution
N(0,1). The Donoho’s wavelet denoising scheme can be
summarized as follows:

1. Transform the noisy image B(4, j) into an orthogonal
domain by 2D discrete wavelet transform.

2. Apply soft or hard thresholding to the resulting wavelet

coefficients by using the threshold A = o+/2 logn?2.
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3. Perform inverse 2D discrete wavelet transform to ob-
tain the denoised image.

This method performs well under a number of applica-
tions because wavelet transform has the compaction prop-
erty of having only a small number of large coefficients. All
the rest wavelet coefficients are very small. The denoising
is done only on the detail coefficients of the wavelet trans-
form. It has been shown that this algorithm offers the ad-
vantages of smoothness and adaptation. However, as Coif-
man and Donoho [1] pointed out, this algorithm exhibits vi-
sual artifacts: Gibbs phenomena in the neighbourhood of
discontinuities. Therefore, they propose in [1] a transla-
tion invariant (TI) denoising scheme to suppress such ar-
tifacts by averaging over the denoised signals of all circular
shifts. The experimental results in [1] confirm that single TI
wavelet denoising performs better than the traditional sin-
gle wavelet denoising. Bui and Chen [2] also proposed a TI
multiwavelet denoising scheme that gave better results than
the T single wavelet denoising. Recently, several important
approaches are proposed by considering the influence of
other wavelet coefficients on the current wavelet coefficient
to be thresholded. The motivation of this idea is that a large
wavelet coefficient will probably have large wavelet coeffi-
cients at its neighbours. This is because wavelet transform
produces correlated wavelet coefficients. Cai and Silverman
[3] proposed a thresholding scheme by taking the immediate
neighbour coefficients into account. Their experimental re-
sults showed apparent advantages over the traditional term-
by-term wavelet denoising. Chen and Bui [4] extended this
neighbouring wavelet thresholding idea to the multiwavelet
case. They claimed that neighbour multiwavelet denoising
outperforms neighbour single wavelet denoising for some
standard testing signals and real-life images. Shenggian et
al. [5] proposed an adaptive shrinkage denoising scheme
by using neighbourhood characteristics. They claimed that
their new scheme produced better results than Donoho’s
methods. Sendur and Selesnick [6] [7] proposed bivariate
shrinkage functions for denoising. It is indicated that the
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estimated wavelet coefficients depend on the parent coeffi-
cients. The smaller the parent coefficients, the greater the
shrinkage. Crouse et al. [8] developed a framework for
statistical signal processing based on wavelet-domain hid-
den markov models (HMM). The framework enables us to
concisely model the non-Gaussian statistics of individual
wavelet coefficients and capture statistical dependencies be-
tween coefficients.

In this paper, we extend Cai and Silverman’s idea to the
image case. For images, we need to consider a neighbour-
hood window around the wavelet coefficients to be thresh-
olded. We propose one way to thresholding the wavelet co-
efficients, namely NeighShrink. NeighShrink thresh-
olds the wavelet coefficients according to the magnitude of
the square sum of all the wavelet coefficients within the
neighbourhood window. Experimental results show that by
using neighbouring coefficients NeighShrink gets higher
Peak Signal to Noise Ratio (PSNR) for all the denoised
images. Also, we find that neighbour wavelet image de-
noising algorithm NeighShrink outperforms VisuShrink,
SUREShrink and Wiener filter.

The organization of this paper is as follows. We ex-
plain how to incorporate neighbouring wavelet coefficients
into image denoising in Section 2. Experimental results are
shown in Section 3. And finally we give the conclusion and
future work to be done in section 4.

2. INCORPORATING NEIGHBOURING WAVELET
COEFFICIENTS IN IMAGE DENOISING

The wavelet transform can be accomplished by applying the
low-pass and high-pass filters on the same set of low fre-
quency coefficients recursively. That means wavelet coef-
ficients are correlated in a small neighbourhood. A large
wavelet coefficient will probably have large coefficients at
its neighbours. Therefore, Cai et al. [3] proposed the fol-
lowing wavelet denoising scheme for 1D signal by incorpo-
rating neighbouring coefficients in the thresholding process.
Suppose d; . is the set of wavelet coefficients of the noisy
1D signal. If S]?,k = d?,,ﬁl + dik + d?,kﬂ is less than or
equal to A2, then we set the wavelet coefficient d;, i to zero.
Otherwise, we shrink it according to

djk = djr(1—X*/S3,)

where A = /202 logn and n is the length of the signal.
Note that we should omit the first (last) term in SJQ., w if djk
is at the left (right) boundary of level j wavelet coefficients.

For image denoising, we have to do a 2D wavelet trans-
form. At every decomposition level, we get four frequency
subbands, namely, LL, LH, HL, and HH. The next level
should be applied to the low frequency subband LL only.

This process is continued until a prespecified level is reached.
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Fig. 1. An illustration of the neighbourhood window cen-
tered at the wavelet coefficient to be thresholded.

Since the Gaussian noise will be nearly averaged out in the
low frequency wavelet coefficients and we want to keep
small coefficients in these frequencies, only wavelet coef-
ficients in the high frequency levels need to be thresholded.
That means we need to threshold all LH, HL, and HH within
these high frequency subbands. For every wavelet coeffi-
cient d; ; of our interest, we need to consider a neighbour-
hood window B; j around it. We choose the window by
having the same number of pixels above, below, on the left
or right of the pixel to be thresholded. That means the neigh-
bourhood window size should be 3x 3, 5x5, 7x7,9x9, etc.
Figure 1 illustrates a 3 x 3 neighbourhood window centered
at the wavelet coefficient to be thresholded. We threshold
different wavelet coefficient subbands independently.

Let

ng',k = Z dzg,l

(i,1)EBj
when the above summation has pixel indices out of the wavelet
subband range, we omit the corresponding terms in the sum-
mation. For the wavelet coefficient to be thresholded, we
shrinkage it according to the following formula:

djk = dj Bk
where the shrinkage factor can be defined as:

Bik=(1—=XN/S3 )+

here, the + sign at end of the formula means to keep the
positive value while set it to zero when it is negative, and
A = /202logn2. Note that this thresholding formula is
a modification to the classical soft thresholding scheme de-
veloped by Donoho and his coworkers. The neighbourhood
window size around the wavelet coefficient to be thresh-
olded has influence on the denoising ability of our proposed
algorithm. The larger the window, the relatively smaller the
threshold is. If the size of the window around the pixel is too
large, a lot of noise will be kept, so an intermediate window
size of 3 x 3 or 5 x 5 should be used.

The neighbour wavelet image denoising algorithm can
be described as follows:
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1. Perform forward 2D wavelet decomposition on the
noisy image.

2. Apply the proposed shrinkage scheme to threshold
the wavelet coefficients using a neighbourhood win-
dow B, 1, and the universal threshold /202 log n2.

3. Perform inverse 2D wavelet transform on the thresh-
olded wavelet coefficients.

We call this algorithm NeighShrink. As we know Vis-
uShrink kills too many small wavelet coefficients, our shrink-
age schemes should perform better. From our experiments
we find that NeighShrink performs the best. It outperforms
VisuShrink, SUREShrink, and Wiener filter for all exper-
iments.

We also consider the shrinkage scheme that calculates
the average value in the neighbourhood window and then
threshold the current wavelet coefficient according to this
average value. This thesholding formula can be given as:

Bik = (1= N?X/S3 )+

where N is the neighbourhood window size in one dimen-
sion. However, using the average gets worse denoising re-
sults than VisuShrink. We give this thresholding formula
because taking the average is a natural choice. Unfortu-
nately, it does not give us better denoising results.

This algorithm has higher computational demands. We
give the algorithm complexity of the algorithm here. The
forward 2D wavelet transform needs 2Ln? flops of com-
putation, where L is the wavelet filter length and n is the
image size in one dimension. The thresholding process us-
ing neighbour information requires N?n? flops of calcula-
tion, where IV is the neighbourhood window size in one
dimension. The inverse 2D wavelet transform also needs
2Ln? flops of computation, just like the forward 2D wavelet
transform. In total, the algorithm NeighShrink takes (4L +
N?)n? flops of computation. On the other hand, VisuShrink
only needs 4Ln? flops of computation. We get better qual-
ity denoised images by sacrificing some amount of compu-
tation time.

3. EXPERIMENTAL RESULTS

We perform our experiments on the well-known images Lena.
We get this image from the free software package WaveLab
developed by Donoho et al. at Stanford University. For
comparison, we implement VisuShrink, NeighShrink,
SUREShrink, and Wiener filter. VisuShrink is the universal
soft-thresholding denoising technique [9] and SUREShrink
is a SURE risk-based scale dependent denoising technique.
Our program is written in Matlab by calling WaveLab func-
tions. We use a 5 x 5 neighbourhood of each pixel in the
image for the Wiener filter. The Daubechies wavelet with 8

vanishing moments is used for the wavelet decomposition.
All detailed scales except the five coarsest scales are thresh-
olded using the universal threshold y/262logn?. Note that
this threshold is the same as Donoho’s threshold for 1D sig-
nal except we replace n in 1D signal with n? in 2D image.
For different Gaussian white noise levels, the experimental
results in Peak Signal to Noise Ratio (PS N R) are shown in
Table 1 for denoising images Lena. The PSN R is defined
as

24, (B> 5) — A(i,j))2‘

n? max; ; A(i, j)?

PSNR = —10log,,

where B is the denoised image and A is the noise-free im-
age. The first column in this table is the PSN R of the
original noisy images, while other columns are the PSNR
of the denoised images by using different denoising meth-
ods. From Table 1 we can see that NeighShrink outperforms
VisuShrink, SUREShrink, and Wiener filter for all cases. Vi-
suShrink does not have any denoising power when the noise
level is low. Under such a condition, VisuShrink produces
even worse results than the original noisy images. How-
ever, NeighShrink performs very well in this case. When
the noise level is low, the improvement of NeighShrink
over VisuShrink is large. When the noise level is high,
the improvement is low even though NeighShrink is still
better than VisuShrink. Figure 2 shows the noise-free im-
ages, the same image with noise added, the denoised im-
age with VisuShrink, the denoised image with NeighShrink,
the denoised image with SUREShrink, and the denoised im-
age with Wiener filter for images Lena. By studying the
denoised images in Figure 2, we see that NeighShrink pro-
duces smoother and clearer denoised images. We also thresh-
old the wavelet coefficients by looking at the average value
in the neighbourhood window, and we find that it does not
perform as well as VisuShrink for all denoising experiments.
We conduct this experiment in this paper because taking
the average of the wavelet coefficients in the neighbourhood
window is a natural choice. Unfortunately, it does not pro-
vide better performance.

In order to investigate the influence of neighbourhood
window size to the denoising ability, we list the experimen-
tal results for different window sizes in Table 2. These ex-
periments are done using NeighShrink. We can see that the
window sizes of 3 x 3 and 5 x 5 are the best. When the win-
dow size is getting larger, the denoising ability is getting
worse. However, when the window size is extremely small,
just like the term-by-term thresholding, the denoising abil-
ity is not very high. We have found that the intermediate
neighbourhood window sizes of 3 x 3 and 5 x 5 are good
choices for our proposed algorithm NeighShrink.
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Noisy Image | VisuShrink | NeighShrink | Wiener
27.28 25.49 31.50 30.75
21.26 23.03 27.43 26.38
17.74 22.01 25.24 23.89
15.23 21.46 23.83 22.07
13.30 21.04 22.85 20.58
11.72 20.68 22.10 19.29
10.38 20.37 21.50 18.14

Table 1. The PSNR (dB) of the noisy images of Lena and
the denoised images with different denoising methods.
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Noise-free image

50 100 150 200 250
NeighShrink

Fig. 2. Image denoising by using different methods on a

50 100 150 200 250

Noisy image

50 100 150 200 250

SUREShrink

noisy image with PSNR = 21dB.

50 100 150 200 250

VisuShrink

50 100 150 200 250
Wiener

Noisy Window Size
Image | 1x1 3x3 5x5 7x7
Lena 17.74 | 22.01 | 25.25 | 25.05 | 21.74
MRIScan 18.56 | 22.70 | 26.76 | 26.32 | 22.71
Fingerprint | 16.51 | 20.83 | 23.68 | 24.57 | 21.17
Phone 18.56 | 23.04 | 24.90 | 24.25 | 21.78
Daubechies | 17.28 | 28.43 | 29.59 | 27.27 | 22.09
Coifman 15.34 | 24.87 | 26.77 | 24.91 | 20.05

Table 2. The PSNR (dB) of the denoised images with dif-

ferent neighbourhood window sizes.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we study image denoising by incorporating

neighbouring wavelet coefficients. Experimental results show
that NeighShrink gives better results than VisuShrink, SUREShrink

and Wiener filter under all experiments. It should be men-
tioned that in this paper we investigate only how the clas-
sical soft thresholding approach should be modified to take
into account neighbour wavelet coefficients. We conclude
that NeighShrink can be used for practical image denoising
applications. Future work may be done by considering the
technique of incorporating neighbour multiwavelet coeffi-
cients in the thresholding process for multiwavelet image
denoising.
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