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ABSTRACT 

  
In this paper, modeling and estimation of a class of 
dynamic multiscale system subject to colored state 
equation noise and measurement equation noise is 
proposed. The state equation is whitened firstly and then 
the measurement equation. The state space projection 
equation is used to link the scales, then a new system 
model is built. The new model is in a form suitable for the 
application of the Kalman filter equations. Haar-wavelet-
based model and estimation algorithm are given. Monte 
Carlo simulation results demonstrate that the proposed 
algorithm is effective and powerful in this kind of 
multiscale estimation problem. 

  

1. INTRODUCTION 
  

Many advanced systems are mostly observed by 
several sensors independently at different scales. The 
resolution and sampling frequencies of the sensors are 
supposed to decrease from sensor 1 to sensor J, the real 
state at each scale is , 1,2, ,jx j J= … , respectively. The state 

equation is described by a partial differential equation at 
the finest scale. An important practical problem in the 
above systems is to find a state estimator given the 
observations. This problem has been studied in recent 
years due to the numerous applications associated with it  
[1]-[10].  

In [9], an algorithm for optimal and dynamic 
multiresolutional distributed filtering is derived. The 
wavelet transform is utilized as a bridge linking the signals 
at different resolution levels. In [10], an optimal estimation 
of a class of dynamic multiscale systems is discussed. The 
sampling frequencies of the sensors are supposed to 
decrease by a factor of two. That paper introduces the 
state space projection equation, and fuses the information 
at all scales by the measurement equation augmentation.  

In aforementioned approaches, they all assumed that 
measurement equation noise is white. In practice, due to 
the scintillation of the target, the measurement noise may 

not be white. Typically, in many radar systems, the 
measurement frequency is high enough so that the 
correlation of the successive samples of the noise cannot 
be ignored without degrading the tracking performance. 
Very little work has been proposed for solving the 
estimation problem of dynamic multiscale system subject 
to colored measurement noise. It is the main focus of this  
paper. 

The state equation is whitened firstly and then the 
measurement equation. The colored state noise vector is 
augmented in the system state variables, and a new 
measurement is introduced at each scale to decorrelate the 
colored measurement noise. The state space projection 
equation is used to link the scales, and then a new system 
model is built. This model is in a form suitable for the 
application of the standard Kalman filter equations [11]-
[12], in which the process and the measurement are 
presumed white. Haar-wavelet-based model and estimation 
algorithm are given. Experimental results are reported to 
demonstrate the effectiveness of the new algorithm. 
  

2. MODELING AND ESTIMATION ALGORITHM 
BASED ON HAAR WAVELET 

  
  
  
  
  
  
  
  
  
  
  
  

Fig.1 Tree structure of the dynamic multiscale system state nodes 
 at time interval k T∆  

For convenience, let the sampling rate decrease from 
sensor 1 to sensor J by a factor of two. Obviously, sensor 
1 corresponds to the finest scale. The state at all scales in 
time interval T∆  is called a state block, and the 
measurement a data block. In every T∆ , the state 
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estimation must be updated when a new data block is 
available. We hope the approximation of any node at any 
scale is accomplished in time interval T∆ , not using the 
state nodes outside of it. We choose the Haar wavelet [13]. 
This choice is motivated by the particularly simple 
realization of the Haar wavelet transform in our multiscale 
framework by using a bintree structure. Haar wavelet is the 
simplest and most widely used one with low-pass filter 

2 2, 2 2 
  .  

For clarity, we unify the notations of state nodes firstly. 
Fig.1 shows the system bintree structure at time interval 
k T∆ . ( )Jx k  is denoted as the state of scale J, 1(2 )Jx k−  and 

1(2 1)Jx k− +  the states at scale 1J − . Analogically, at scale j  

there are 2J j−  state nodes, which are denoted as 
(2 )J j

jx k− , (2 1)J j
jx k− + … ( )2 ( 1) 1J j

jx k− + − . Assuming the 

multiscale system state structure satisfies the dyadic 
structure of Haar wavelet, the node (2 )J j

j jx k m− +  can be 

expressed with the finest scale nodes as follows 
11 2 1

1 1
1

0

2(2 ) (2 2 )2

jj
J j J j

j i j
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x k m x k m i
−− −

− − −

=
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where 0,1,...,2 1J j
jm −= − . 

2.1 State equation 
For simplicity, we assume the system to be time-

invariant. The discrete state transition equation of the 
finest scale at time interval Tk ∆)1( + is  

1 1 1
1 1(2 ( 1)) (2 ( 1) 1) (2 ( 1) 1)J J Jx k Ax k B kη− − −+ = + − + + −  

where 1( ) xNx Ri ∈ , state transition matrix x xN NA R ×∈ , noise 
stimulus matrix xN uB R ×∈ , the dimension of colored noise 

( )η i  is u , and    
1 1 1(2 ( 1)) (2 ( 1) 1) (2 ( 1) 1)J J Jk k w kη η− − −+ = Φ + − + + −  

where ( ) uw Ri ∈  is a Gaussian white process with 
covariance q . 

Define a xN u+  state vector such that it includes the 

original system state variables and u  elements of the 
colored measurement noise vector, then 
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where 1 ( ) xN uax Ri +∈ , ( ) ( )x xN u N uaA R + × +∈ , ( ) xN uaw Ri +∈ . The 

system state equation by augmenting the state is  
1 1 1

1 1(2 ( 1)) (2 ( 1) 1) (2 ( 1) 1)a J a a J a Jx k A x k w k− − −+ = + − + + −             (1) 

and ( )1(2 ( 1) 1)a J aCov w k q
q

Ο Ο
Ο

−  
+ − = = 

  
. 

From Eq. (1), we know  

1
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Letting  
1 1 1

1 1 1( ) ( (2 ), (2 1), , (2 ( 1) 1))a J a J a Jx k col x k x k x kL− − −= + + −  
( )1 1 1( ) (2 ( 1) 1), (2 ( 1)),..., (2 ( 2) 2)a J a J a Jw k col w k w k w k− − −= + − + + −  

1 1
1( ) ( )maA m A += , 1 1 1

1( ) [( ) , ( ) , , , , , ]m ma aB m A A I Ο Ο… …−=  

where 
12 ( ) 1( )

J
xN ux k R

− + ×∈ , col denotes arranging the data in 

the bracket into column vector. 
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J
xN uw k R

− + ×∈ , 
( ) ( )

1( ) x xN u N uA m R + × +∈ , 
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J
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−+ × +∈  is with zero elements 

on the last 1
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xm N u− − − × +  columns. 

Letting

  
1

(0)
(1)

(2 1)J

A
A

A

A −

 Ο Ο
 Ο Ο =
 
 
Ο Ο −  

L
L

M O M M
L

, 

 

1

(0)
(1)

(2 1)J

B
B

B

B −

 
 
 =
 
 

−  

M  

where 1 12 ( ) 2 ( )J J
x xN u N uA R

− −+ × +∈ , 1 12 ( ) 2 ( )J J
x xN u N uB R

− −+ × +∈ . Then we have 
( 1) ( ) ( )x k Ax k B w k+ = +                      (2) 

2.2 Measurement equation 
From the state space projection equation [10], we have 

1j jx P x=  

where jP  is the state space projection operator, discrete 

measurement equation of node (2 )J j
j jx k m− +  of scale j at 

time interval k T∆  is  
(2 ) (2 ) (2 ), 1,2, ,J j J j J j

j j j j j j jk m D x k m k m j Jξ− − −∆ + = + + + = L          (3) 

where the dimension of ( )j∆ i  is zN , ( )jξ i  is colored noise, 

and 
(2 ) (2 1) (2 1)J j J j J j

j j j j j j jk m k m e k mξ ψ ξ− − −+ = + − + + −     

where ( )je i  is a Gaussian white process with covariance 

ejR , and ( )je i  and ( )w i  are mutually independent. Then 

Eq.(3) becomes  
1(2 )

(2 ) (2 )
(2 )

J j
jJ j J j

j j j j j jJ j
j

x k m
k m D P k m

k m
ξ

η
∆ Ο

−

− −
−

 +
  + = + +  +  

 

where zN uRΟ ×∈  is zero element matrix. Denoting 
a
j j jD D P Ο =   , then 

1(2 ) (2 ) (2 )J j a a J j J j
j j j j j jk m D x k m k mξ∆  − − −+ = + + +  

To decorrelate the colored measurement noise ( )jξ  i , we 

introduce the pseudo measurement (2 )J j
j jz k m− + , and 

1

(2 ) (2 ) (2 1)

[ ] (2 1)

   [ (2 1) (2 1)]
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ψ

ψ
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−
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From the special structure of a
jD  and ( )aw i , we know that 

(2 1) 0a a J j
j jD w k m− + − = . Then  

II - 914

➡ ➡



1(2 ) [ ] (2 1) (2 1)J j a a a a J j J j
j j j j j j j jz k m D A D x k m e k mψ− − −+ = − + − + + −  

Denoting 
a a a

j j j jC D A Dψ= −    

(2 ) (2 1)J j J j
j j j jv k m e k m− −+ = + −      

and 
( )(2 )J j

j jCov v k m Rej
− + =  

then we have  

1

(2 )

(2 1) (2 ) ,   1,2, ,

J j
j j

a J j J j
j j j j

z k m

C x k m v k m j J

−

− −

+

= + − + + = …
    (4) 

Denoting 

( )1 1 12 2 2 1 2

( ) 0 ,...,0 ,..., 0 ,...,0
j j J j j

j j

j j

m m

m S S S S S SΘ 14243 123 14243
− − − −− −

 
 = ⋅ ⋅ ⋅ ⋅ 
  

 

where S  is ( ) ( )x xN u N u+ × +  identity matrix, 
1( ) 2 ( )( )

J
x xN u N u

j jm R
−+ × +Θ ∈ . 
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the covariance of ( )jv k  is  
( ) [ , , , ]j ej ej ejR k diag R R R…=  

then 
( ) ( ) ( )j j jz k C x k v k= +  

Denoting 
( ))(),...,(),()( 11 kkkcolk JJ zzzz −=  

( )1 1, ,...,J JC col C C C−=  

( ))(),...,(),()( 11 kkkcolk JJ vvvv −=  

then we have 
( ) ( ) ( )z k Cx k v k= +                           (5) 

the covariance of )(kv  is  
[ ])(),...,(),()( 11 kRkRkRdiagkR JJ −=  

2.3 Kalman filter 
Eqs. (2) and (5) can be written together 
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+=+

)()()()(
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                (6)

 

where )(kw and )(kv are white noise. Assuming that the 

filter is stable, the Linear Minimum Mean-square Error 
(LMMSE) (̂ )x k  of state ( )x k  can be obtained by 
performing Kalman filtering. In the following, the optimal 
estimation of the state node at the finest scale is given. 
Denoting 

( )1 1 12 2 2 1 2

( ) 0 ,...,0 ,..., 0 ,...,0
j j J j j

j j

j j

m m

mΤ Λ Λ Λ Λ Λ Λ1442443 14243 1442443
− − − −− −

 
 = ⋅ ⋅ ⋅ ⋅ 
  

 

where [ ]Λ Ι Ο  = , Ι  is x xN N×  identity matrix, Ο  is xN u×  zero 

matrix. ( )j jmΤ  is  12 ( )J
x xN N u−× +  matrix, then the LMMSE 

estimation of state node (2 )J j
j jx k m− +  is  ˆ( ) ( )j jm x kΤ ⋅ . 

2.4 Filtering outputs at each scale 
Filtering outputs at each scale can be obtained 

according to the theorem 1 shown below. The detailed 
proof can be referred to reference [10]. 
Theorem 1 Suppose (̂ )kx  is the LMMSE of ( )kx , then the 

LMMSE of node (2 )J j
j jk m− +x  is ( ) 1

2
2

ˆ( ) ( )
j

j jm x k
−

Τi i . 

   
3 SIMULATION RESULTS 

  
For verifying the validity of our algorithm, consider the 

following constant-velocity dynamic system with position-
only measurements at two scales. 

1 1
2 2 2 2 2 2

(2 2) (2 1) (2 1)
(2 2 1) (2 2 1) (2 2 1),  1,2j j j j j j

j j j j

x k Ax k B k
z k D x k k j

η
ξ− − − − − −

+ = + + +
 + − = + − + + − =   

where (2 1)kη +  and 2 2(2 2 1)j j
j kξ − −+ −  are colored noise, and 

(2 1) (2 ) (2 )k k w kη η+ = Φ +  
2 2 2 2 2 2(2 2 ) (2 2 1) (2 2 1)j j j j j j

j j j jk k e kξ ψ ξ− − − − − −+ = + − + + −  

( )w i  and ( )je i  are Gaussian white noises with zero mean, 

and  

1 2

( ( ) ( ) ) , ( ( ) ( ) )
( ( ) ( ) ) 0, ( ( ) ( ) ) 0

T T
kl j j j kl

T T
j

E w k w l q E e k e l r
E e k e l E w k e l

δ δ = =
 = =

 

Letting 









=

10
1 T

A , [ ]TTTB 2
2
1= , [ ]1 2 1 0D D= = ,  

1T = , 1q = , 1 46r = , 2 42r = , 0.5Φ = , 1 2 0.5ψ ψ= = . 
T is the sampling rate, and 1 [position, velocity]x ′= . 

Fig.2 shows a sequence of the true state and the 
estimated state at scale 1. Fig.3 shows a sequence of the 
true state and the estimated state at scale 2. Fig.4 and 
Table 1 give the results of Monte Carlo Simulation (100 
runs). Fig.4 compares the measurement noise RMS with 
the estimation error RMS at two scales. The noise 
compression ratio at scale 1 and scale 2 are 4.9993dB and 
1.8016dB, respectively.  

Table 1 shows the influence of q  on the noise 
compression ratio. We can see that, the noise compression 
ratios at two scales decrease with the increasing of q  and 
Φ . Table 2 shows the influence of 1ψ  and 2ψ  on the noise 
compression ratio.  

Table 3 shows the influence of 1r  and 2r  on the noise 
compression ratio. It can be seen that, the noise 
compression ratio increases at scale 1 and decreases at 
scale 2 with the decreasing of 2r  while 1r  is unchanged. 
When 2r  remains unchanged and 1r  decreases, the ratio 
increases at scale 2 and decreases at scale 1. The ratio at 
two scales decrease with the decreasing of 1r  and 2r . 
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(a)displacement                              (b) velocity 

Fig. 2 True state (dotted) and the estimated state (solid) at scale 1 

 
              (a) displacement                              (b) velocity 
Fig. 3 True state (dotted) and the estimated state (solid) at scale 2 

 
              (a) scale 1                                       (b) scale 2 

Fig. 4 Measurement noise RMS (dotted)  and the estimation  
error RMS (solid) 

 
Table 1 Influence of q  on the noise compression ratio  (dB) 

Parameters 
Noise 
compression ratio  

Φ  q  T 1ψ  2ψ  1r  2r  Scale 1 Scale 2 

0.5 1 1 0.5 0.5 46 43 5.0387 1.9962 
0.5 1.5 1 0.5 0.5 46 43 4.5235 1.4910 

0.5 2 1 0.5 0.5 46 43 4.1491 1.0808 
0.5 2.5 1 0.5 0.5 46 43 3.6724 0.6351 
0.5 3 1 0.5 0.5 46 43 3.3379 0.3561 

  
4 CONCLUSION 

  
In this paper, modeling and estimation of a class of 

dynamic multiscale system is proposed. The system state 
is described with a partial differential equation, and is 
observed by multiple sensors in a closed subspace 
sequence of the state space. The noise in the state 
equation and measurement noise is colored noise. The 
state space projection equation is used to link the scales. 
The state equation is whitened firstly and then the 
measurement equation. The model of new system satisfies 
the Kalman filter condition. Haar-wavelet-based model and 
estimation algorithm are given. Monte Carlo simulation 
results verify the validation of our algorithm. 
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