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ABSTRACT

Weighted median (WM) filtering structures for complex-
valued samples have been proposed but none of them al-
lows the use of complex-valued weights. This paper defines
complex-valued weighting for median filters with complex-
valued input samples. Two different approaches to the han-
dling of weights in the complex domain are presented, both
derived from characteristics of complex-valued linear fil-
ters, resulting in two definitions of the complex weighted
median filter. The LMS optimizations of the proposed fil-
tering schemes are also presented. Simulations are shown
illustrating the performance of the new complex WM filter
structures compared with previous approaches to the prob-
lem and with classical linear filters.

1. INTRODUCTION

Although robust signal processing methods for real-valued
data have been investigated extensively in the past decade,
approaches for complex-valued signals have not received at-
tention. This is the case even for the well known weighted
medians. If weighting of the complex samples is desirable,
the existing definitions are severely limited in that only pos-
itive weights are allowed.

Several approaches to overcome the computational
complexity of complex valued medians have been proposed
[1, 2]. However, none of these structures allows complex
valued weights. This paper defines complex weighting in
WM filters based on the concepts of phase-coupling and
real-imaginary coupling. In order to introduce these con-
cepts it is useful to formulate this filtering problem from its
statistical roots.

Under the Laplacian model, the maximum likelihood es-
timate of location is given by [3]

�� � � � 	 �  ��
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� � � � � � � � (1)

where the input samples �  " # % ' are complex-valued. There
is no closed-form solution to (1). The suboptimal approach

introduced by Astola [4], the marginal complex median, is
a fast approximation that considers real and imaginary parts
independent, allowing to break up the complex-valued opti-
mization into two real-valued optimizations. This approach
admits only positive weights. To overcome these limita-
tions, we introduce the concept of phase coupling, consist-
ing in decoupling the phase of the complex-valued weight
and merging it to the associated complex-valued input sam-
ple, and use it to define the phase coupled complex WM
filter. A second approach to the weighting concept that
exploits the correlation between real and imaginary parts
of the input samples is introduced. Based on this concept
we define the real-imaginary coupled complex WM. This
structures were initially introduced in [5, 6] but a more con-
ceptual approach is presented here.

2. COMPLEX WEIGHTED MEDIAN FILTERS

The weighting strategy is essential to filtering operations.
Many communications related applications require filtering
structures admitting complex-valued weights. For linear fil-
ters, there are no difficulties in obtaining the optimal weights.
However, due to the nonlinear nature of the median opera-
tion, the optimal complex weight design for median-type
filters has not been explored in the literature to our best
knowledge, and even the meaning of complex weighting it-
self is vague. In this section we propose a set of complex
weighted median filter structures that can fully exploit the
power of complex weighting and still keep the advantages
inherited from univariate medians. The simplest approach
to attain complex WM filtering is to perform marginal op-
erations where the real component of the weights ( * , " # % '
affect the real part of the samples � * , " # % ' and the imag-
inary component of the weights ( 0 , " # % ' affect the imagi-
nary part of the samples � 0 , " # % ' . This approach referred to
as marginal complex WM filter outputs:
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where
�

is the replication operator defined as � � � �� � � � 	 ��  � �� � � � � � � � � and the real and imaginary components are
decoupled 1. The definition in (2) assumes that the real and
imaginary components of the input samples are indepen-
dent. On the other hand, if the real and imaginary domains
are correlated, better performance is attainable by mutually
coupling the components of the signal and weights.

Consider the mean operation with complex-valued
weights � � � � � � � � � � � � �� � 	 ,�
 � � � � � � � �� � � � � � � � � �� � � ��  ! �� � � �

�
�

� � � " $ & ( � � � ) (3)

The simple manipulation in (3) reveals that the weights
have two roles in the weighted mean operation. First their
phases are coupled into the samples changing them into
a new group of phased samples, and then the magnitudes
of the weights are applied. The process of decoupling the
phase from the weight and merge it to the associated input
sample is called phase coupling. The definition of the phase
coupled complex WM filter follows by analogy.

2.1. Phase Coupled Complex WM Filter

Given the complex valued samples � 	 � � + � , , , � � and the
complex valued weights � � � � � � � � � � � � / � 2 � , , � 4 , the
output of the phase coupled complex WM is defined as�
 � " # % ' ) +,

�� � � �
�

�
� � � " $ & ( � � � / 
 � ) (4)

This definition of the complex weighted median delivers a
rich class of complex median filtering structures. The solu-
tion to (4), however, suffers from computational complexity
as the cost function must be searched for its minimum. Any
one of the already mentioned suboptimal approximations,
i.e. assume that the output

56
is one of the phase-coupled

input samples or, split the problem into real and imaginary
parts, arise as effective ways to reduce the complexity. The
first approximation referred to as the selection phase cou-
pled complex WM reduces (4) to,�
 � " # % 8 ' ), : < = > @ B � D � F

�� � � �
�

�
� � � " $ & ( � � � / 
 � ) (5)

Since
56

is confined to be one of the phase-coupled in-
puts, this filter is intuitively desirable when very sensitive
information is carried by the phase of samples and weights.
However the computation of (5) requires the evaluation of
the cost function for each one of the phase-coupled input
samples and thus may be not suitable for fast applications.
The following definitions provide efficient and fast complex-
valued WM filter structures.

1For a method for the calculation of the weighted median with non-
integer weights refer to [3].

2.2. Marginal Phase Coupled Complex Weighted Me-
dian Filter

The marginal phase coupled complex WM filter reduces the
output in (4) to the following two real-valued weighted me-
dians,

�
 2 � " # % ' ) +, G
�� � � �

�
�

� � � H J < " $ & ( � � � F / 
 2
�

� � � 6 8 � � � �
�

� � : H J < " $ & ( � � � F � �� � � � � (6)�
 ; � " # % ' ) +, L
�� � � �

�
�

� � � 8 8 < " $ & ( � � � F / 
 ;
�

� � � 6 8 � � � �
�

� � : 8 8 < " $ & ( � � � F � �� � � � � (7)

where M N P � Q and R S P � Q denote real and imaginary part re-
spectively, and the filter output is

56 � 56 < V X 56 = .

2.3. Real-Imaginary Coupled Complex Weighted Me-
dian Filter

In phase coupling, the phase of the weights modify the phase
of the input samples and the norms of the weights perform
the smoothing operation in the real and imaginary domains
independently. As an alternative, we can use the complex-
valued weights to exploit the coupling characteristics be-
tween the real and imaginary parts of the input signal. These
characteristics are shown in the computation of the com-
plex linear filter. Letting Y � [ � 	 � � + � , , , � � � ] ^

and_ � [ � 	 � � + � , , , � � � ] ^
, the output of the complex linear

filter is�
 � a c d � > a f2
/ ? a f; @ � � d 2 A ? d ; �� > a f 2 d 2 A a f; d ; A ? a f2 d ;

/ ? a f; d 2 @ ) (8)

where
a 2 � H J < a F � a ; � 8 8 < a F � d ; � 8 8 < d F �d 2 � H J < d F . Defining the following vectors:

a f2 ; �i a f2 kk
a f; m � d f 2 ; � i d f 2 k k

d f; m � d f; 2 > � i d f; kk
/ d f 2 m ,

the complex linear filtering structure can be rewritten as,�
 � a c d � a f2 ; d 2 ; A ? a f2 ; d ; 2 > ) (9)

Thus the complex linear filter can be split into two real
linear filtering structures. This representation is very conve-
nient since the vector Y ^< = is used in both real-valued filter-
ing operations. Additionally, the two data vectors

_ < = and_ = < > are created from the original input data vector which
is not computationally expensive. The linear complex filter-
ing representation in (9) motivates the following definition,
namely the real-imaginary coupled complex WM,�
 � � � 6 8 � � � a f 2 ;

: d 2 ; � A ? � � 6 8 � � � a f 2 ;
: d ; 2 > �� � � 6 8 � � � �
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where � � � � � � � � � 	 , � � � � 
 � � � � 	 , � � � � � � � � � 	
and � � � � 
 � � � � 	 for � � � � � � � � � � � .

Three important characteristics provide a strong support
for this definition. First, the sample vectors

� � � and
� � � �

are intrinsically coupled in the complex space. This facili-
tates to perform the optimization of the filter in a joint (real
and imaginary components) manner. Second, the computa-
tion in (10) does not require any suboptimal implementation
since it consists of two real-valued weighted median opera-
tions that are known to be fast. Lastly, the definition in (10)
reduces to the real-valued weighted median filter when the
samples and weights are real-valued.

3. OPTIMIZATION

In this section, adaptive algorithms for both marginal phase
coupled and real-imaginary coupled complex weighted me-
dian filters in the minimum MSE sense are shown.

3.1. Optimal Marginal Phase Coupled Complex WM

Given the complex-valued samples � � � � � � � 	 , the complex-
valued weights � � � � � � � � � � � � � � 	 , define � � � � � � � � � � � � � �
as the phase-coupled input samples and its real and imagi-
nary parts as � � � � � � � � � 	 � � � � � 
 � � � � 	 .

Assume the observed process � � 	 �  	 and the desired
process � $ 	 �  	 are jointly stationary. The filter output

&$ 	 � 
estimating the desired signal

$ 	 �  is given in (6) and (7).
The cost function to minimize is� � � � � � '

� � � � �
� �� � � �

� �
(

� )� � � � � �
* � + � �  ! #

�
� � � �

* � +
 
!  ' #

� *
" (11)

where � � � � � � $ 	 �  	 , &$ � 	 �  , � � � 
 � � $ 	 �  	 , &$ � 	 �  ,&$ � 	 �  � � � � $ 	 �  	 ,
&$ � 	 �  � 
 � � $ 	 �  	 .

It can be shown that the minimization of (11) leads to
the following LMS weight update equation:

#
$ � � � ) � � #

$ � � � � / '
� 1 � � � � (2 #

$ � � � � / + - . � 4 + � � � �
% & ' � 5 � � � � �

� �� � � � � �� + ! � � �
% & ' � 5 ! � � � �

� �� ! � � � � (12)� 7 ) + � � � � � 5 ! � � � � 9 � 5 � � � � �
� �� � � � � �� 7 ) + ! � � � � 5 � � � � � 9 � 5 ! � � � �

� �� ! � � � � : /

3.2. Optimal Real-Imaginary Coupled Complex WM

It is desired to find the optimum set of coupled real-valued
weights 0 � � needed in the real-imaginary coupled com-
plex WM in the minimum squared error sense. A LMS algo-
rithm for the adaptation of the weights is developed where
the cost function to minimize will be the same as in the pre-
vious case. The desired LMS recursive equation is found to

be as follows

# � ! � � � � ) � � # � ! < � � � � / '
� 1 � � � � ( (13)� # � ! � � � � � / ? + � � � �

% & ' � # � ! � �@ % & ' � % & ' � # � ! � �
-

� ! � � � �
� �� � � � � �� + ! � � �

% & ' � # � ! � �
% & ' . % & ' � # � ! � �

-
! � �� � � �

� �� ! � � � / A /

The step-size parameter B must be chosen properly to a-
chieve the desired convergence rate. Notice that the two
update terms in (14) resemble the real-imaginary coupled
complex WM characteristics.

4. SIMULATIONS

To evaluate the filters adaptive line-enhancement [7] is used.
The input of an eleven tap line enhancer is a complex expo-
nential contaminated with C -stable noise [8] with dispersionD � F � �

. The value of C runs from 1.3 to 2 (Gaussian noise).
The noisy signal will be filtered using the marginal complex
WM filter in (2), the marginal phase-coupled complex WM
filter, the real-imaginary coupled complex WM filter, and
a linear complex valued filter. To analyze the convergence
properties of the algorithms, we plot the learning curves cal-
culated as the average MSE of 1000 realizations of the ex-
periment. Figure 1 shows the results for two values of C :
(a) C =1.5, (b) C =2.0. The plot for the linear filter does not
appear in 1(a) since it diverges.

Table 1. Average MSE using the LMS for Line enhance-
ment. ( B � F � F F H , D � F � �

)
Filter J L N P Q J L N P R J L N P T J L U

Noisy signal 45.2855 10.1473 3.3539 0.9326
Linear filter V V V 0.1152

Marginal complex WM 0.3759 0.3295 0.3332 0.3682
Real-imaginary coupled complex WM 0.2157 0.1601 0.1434 0.1438
Marginal phase coupled complex WM 0.1929 0.1316 0.1180 0.1154

For illustrative purposes the real part of the filter outputs
are shown in Fig. 2. The plot shows 1000 samples of the
filter output taken after the LMS algorithm has converged.
The linear filter is not successful at filtering the impulsive
noise while the complex WM filters are able to recover the
original shape of the signal.

5. CONCLUSIONS

This paper introduced two efficient and well defined robust
filtering structures and their LMS optimization.

The phase coupled complex WM uses phase coupling
between weights and input samples. To calculate the output
of this complex filter, a two-dimensional search in the com-
plex plane is needed which results in a highly expensive
implementation. To overcome this problem, the marginal
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Fig. 1. Learning curves of the LMS algorithm for the com-
plex WM filters and a linear filter for line enhancement in

� -stable noise with dispersion �
� � �

�
and � =0.005: (a)

� =1.5, (b) � =2.

phase coupled complex WM filter was proposed which sep-
arates the optimization problem found in the phase coupled
complex WM into real and imaginary parts.

A second definition of complex-valuedweighting in WM
filters was also presented. It uses the natural coupling char-
acteristic found in complex-valued linear filters. This defini-
tion is called real-imaginary coupled complex WM and ex-
ploits the correlation between real and imaginary domains.

The successful results obtained come from the fact that
these new structures exploit the correlation information be-
tween the real and imaginary parts of the complex input
samples instead of dealing with them independently. In gen-
eral, these ideas not only can be used in complex-valued fil-
tering framework based on median filters but in any other
complex-valued structure based on other type of nonlinear
filters.
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