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ABSTRACT

In this paper, we propose a baseband nonlinear transformation

technique to improve the overall communication system perfor-

mance, under the peak power constraint. A closed-form expres-

sion is derived for the signal-to-noise-and-distortion ratio (SNDR)

of certain nonlinear transformations. A strategy for SNR-adaptive

optimum clipping is proposed. For orthogonal frequency division

multiplexing (OFDM), we show that the optimal clipping ratio

leads to an SNDR improvement of 5-7 dB and accompanying de-

crease in symbol-error-rate. By applying an iterative symbol de-

tection and clipping noise mitigation algorithm at the receiver, we

demonstrate that clipping in OFDM can lead to large performance

gains.

1. INTRODUCTION

Many components in a communication system have a peak power

(or peak amplitude) constraint. For example, power amplifiers

(PAs) are peak power limited. Denote by x(n) a complex base-

band information-bearing signal, and by σ2
x its variance (average

power). Denote the received signal by

y(n) = g(x(n)) + v(n), (1)

where v(n) is zero-mean additive noise with variance σ2
v , g(·) is

a memoryless nonlinear transformation satisfying |g(x)| ≤ Amax,

and Amax is the maximum amplitude that the transmitter can han-

dle. For example, Fig. 1 (a) shows a soft limiter system where

x(n) is passed undistorted if |x(n)| ≤ Amax, but g(x(n)) =

Amax ej∠x(n) if |x(n)| > Amax. In most communication sys-

tems, Amax is governed by the PA; it is selected such that the

signals are transmitted practically undistorted; i.e., the maximum

signal amplitude must stay below Amax with a very high probabil-

ity. Fig. 1 (b) shows a soft limiter with gain, where a linear gain

Amax/A ≥ 1 exists. Fig. 1 (c) shows a nonlinear mapping that

compresses the signal distribution and shifts it to the right. Fig.

1 (d) shows a hard limiter system, after which the amplitude in-

formation contained in x(n) is completely discarded. In all four

cases the maximum of |g(x)| is Amax.

We can write

g(x(n)) = αx(n) + d(n), (2)

where d(n) is the distortion created by g(·), and α is chosen such

that d(n) is uncorrelated with x(n).
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Fig. 1. Some nonlinear mappings under the peak amplitude con-

straint: (a) Soft limiter; (b) soft limiter with gain Amax/A ≥ 1;

(c) limiter with amplitude translation and scaling; (d) hard limiter.

There are many g(·) functions that can ensure |g(x(n))| ≤
Amax. An interesting question to ask is, what constitutes a good

nonlinear mapping? To answer this question, we use as perfor-

mance metric, the signal-to-noise-and-distortion ratio (SNDR) [1,

2], defined as

SNDR =
|α|2σ2

x

εd + σ2
v

, (3)

where εd is the distortion power given by E[|d(n)|2].
Although nonlinearity is generally regarded as an impairment

to a communication system, we argue in this paper that for a given

SNR= σ2
x/σ2

v , a judicious choice of g(·) may lead to significant

improvements in SNDR. We will show that for some low SNR

levels, hard limiting may be more desirable than soft limiting, con-

trary to what one might think at first.

Our analysis has important implications for multi-carrier com-

munication systems, where the peak-to-average power ratio (PAPR)

of x(n) is high, and PAPR reduction methods with distortion (e.g.,

soft limiter) are often of interest [3]. In the PAPR reduction liter-

ature, attention has been on peak power reduction methods. We

argue that since the PA is peak power limited, and its efficiency

is determined by the average output power E[|g(x)|2], it makes

sense to investigate PAPR reduction methods that aim at increas-

ing the average power while keeping the peak power fixed. SNDR
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offers a more complete picture than PAPR, by taking into account

distortions that are generated by PAPR reduction methods.

Although symbol-error-rate (SER) is a more pertinent mea-

sure for communication system performance, for ease of theoret-

ical analysis, we use SNDR improvements (relative to SNR) as

the performance metric. We will show that with carefully intro-

duced nonlinearity at the transmitter, together with iterative detec-

tion that mitigates the nonlinear distortions at the receiver, SER

performance may be greatly improved.

2. SNDR WITH MEMORYLESS NONLINEAR MAPPING

Separating g(x(n)) into a linear term αx(n) and a distortion term

d(n) as in (2), we need

α =
E[x∗(n)g(x(n))]

E[|x(n)|2] =
E[x∗(n)g(x(n))]

σ2
x

(4)

to ensure that d(n) and x(n) are uncorrelated [1,2]. The distortion

power is given by

εd = E[|d(n)|2] = E[|g(x(n)|2] − |α|2σ2
x. (5)

For a given distribution of x(n) and a given g(·) function, both (4)

and (5) can be evaluated.

Although many memoryless nonlinear transformations are of

interest, we focus on the following nonlinear mapping:

g(x(n)) =

{
(B + G|x(n)|) ej∠x(n), |x(n)| ≤ A,

Amax ej∠x(n), |x(n)| > A,
(6)

where A = (Amax − B)/G. The soft limiter in Fig. 1(a) corre-

sponds to (6) with B = 0, G = 1; the soft limiter with gain in Fig.

1(b) corresponds to (6) with B = 0, G = Amax/A > 1; while the

hard limiter in Fig. 1(c) is a special case of (6) with B = Amax.

To visualize what the transformation in (6) does to the prob-

ability density function (PDF) of the signal amplitude, let us con-

sider as an example, r = |x| exponentially distributed with mean

λ; i.e., the PDF f(r) = 1
λ
e−

r
λ , r ≥ 0. Fig. 2(a) shows the PDF of

|x(n)|, and Fig. 2(b) shows the PDF of |g(x(n))| with B = 0.5λ,

Amax = 3λ and G = 1.25. After the nonlinear mapping, the

“center of gravity” of the signal amplitude is moved towards Amax,

implying that the PA is utilized more efficiently.
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Fig. 2. PDF of |x(n)| before and after the nonlinear mapping.

From now on, let us assume that x(n) is complex Gaussian

distributed with variance σ2
x, which is of particular relevance to

orthogonal frequency division multiplexing (OFDM). With a rea-

sonably large number of sub-carriers, the time-domain OFDM sig-

nal x(n) is approximately Gaussian distributed [4].

The complex Gaussian distributed signal is theoretically un-

limited in amplitude although large amplitudes occur infrequently.

In practice, we can set Amax to restrict the peak of the signal to be

distorted with probability of at most ε; therefore, Amax is chosen

such that Amax/σx is at a prescribed level.

Recall that r = |x| is Rayleigh distributed with PDF

f(r) =
2r

σ2
x

e−r2/σ2
x , r ≥ 0, (7)

if x is complex Gaussian distributed. Assuming that x(n) is inde-

pendent, identically-distributed (i.i.d.), by solving

Pr

{
max

0≤n≤N−1
|x(n)| > Amax

}
=1 −

(
1 − e

−
(

Amax
σx

)2
)N

=ξ,

we infer that

Amax = σx

√
− log(1 − N

√
1 − ξ). (8)

Substituting (6) into (4) and using (7) to evaluate the expected

value, we obtain

α =
Amax

σx

√
π

2
+ G(1 − e−γ2

) − Gγ
(√π

2
−√πQ(

√
2γ)

)
, (9)

where γ is defined as the clipping ratio,

γ =
Amax − B

Gσx
=

A

σx
, (10)

and Q(x) = 1√
2π

∫ ∞
x

e−
t2
2 dt.

Based on (6) and (7), we infer that

E[|g(x(n))|2] = A2
max + (B2 − A2

max)
(
1 − e−γ2

)

+2BGσx

(√
π

2
− γe−γ2 −√

πQ(
√

2γ)

)

+G2σ2
x

(
1 − (γ2 + 1)e−γ2

)
. (11)

Substituting (11) into (5), we can then find εd.

Next, we consider special cases of (6) corresponding to Fig. 1.

2.1. Soft limiter with gain

Setting B = 0, we have a soft limiter with gain

g(x(n)) =

{
Gx(n), |x(n)| ≤ A,

Amax ej∠x(n), |x(n)| > A,
(12)

see Fig. 1(b). With γ = Amax/(Gσx), (9) simplifies to

α =
1

γ

Amax

σx

(
1 − e−γ2

+ γ
√

π Q(
√

2γ)
)

, (13)

and (11) reduces to

E[|g(x(n))|2] =
(Amax

γ

)2 (
1 − e−γ2

)
. (14)

Substituting (13) and (14) into (5) and (3), and simplifying, we

obtain

SNDR

SNR
=

(
Amax

σx

)2
ϕ(γ)(

Amax
σx

)2
SNR

(
1 − e−γ2 − ϕ(γ)

)
+ γ2

, (15)
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where SNR= σ2
x/σ2

v , and ϕ(γ) =
(
1− e−γ2

+
√

πγQ(
√

2γ)
)2

.
Converting both sides of (15) into dB scale (taking 10 log10),

we plot in Fig. 3, improvements in SNDR; i.e., SNDR [dB] -

SNR [dB], as a function of γ for prescribed levels of SNR. We

see that for a given SNR, there is a range of γ values for which

SNDR>SNR, implying that overall performance gain is possible

with the nonlinear transformation (12), as compared to the case

without any nonlinear distortion.
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Fig. 3. Gain in SNDR as a function of γ for various SNRs.

We also see from Fig. 3 that for SNR between 0 and 10dB,

maximum SNDR improvements (SNDR [dB] - SNR [dB]) are in

the range 5-7 dB, by judiciously selecting γ. Define γ∗ as the γ
that maximizes the right hand side of (15) for a given SNR. Fig.

4 shows γ∗ as a function of the SNR. We observe from Fig. 4

that when the SNR is low, it makes sense to clip more: although

more distortion is generated, the average transmitted signal power

is increased even more. From Fig. 4, we also observe that for very

low SNRs, γ∗ is close to 0, hinting on hard limiting.
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Fig. 4. Optimal γ as a function of SNR.

2.2. Hard limiter

When B = Amax, we have the hard limiter case and the cor-

responding γ = 0; see Fig. 1(c). Eq. (9) simplifies to α =
(Amax/σx) (

√
π/2). Since g(x(n)) has a constant modulus,

E[|g(x(n))|2] = A2
max. As a result, εd = (1 − π/4)σ2

x, and the

corresponding SNDR gain,

SNDR

SNR
=

(
Amax

σx

)2 π
4(

Amax
σx

)2
SNR (1 − π

4
) + 1

, (16)

which can also be obtained by taking the limit of (15) as γ → 0.

Since 10 log10(π/4) ≈ −1 dB, we infer from (16) that at a

low SNR, the SNDR improvement in dB is approximately 20 log10

(Amax/σx)− 1 dB. For large Amax/σx values, this improvement

can be significant. On the other hand, at a high SNR, the distortion

introduced by the hard limiter becomes significant relative to the

channel noise, leading to SNDR < SNR.

We would like to emphasize that unlike the PA nonlinearity,

the nonlinearity that we apply is at the baseband and prior to pulse

shaping, hence spectral regrowth (broadening) is not a problem.

3. APPLICATIONS TO OFDM

OFDM is well known for its robustness against frequency selec-

tive fading channels and for its high spectral efficiency. It has

shown tremendous potential for high speed digital communication

systems. It has been accepted as standards in many applications

such as digital subscriber line [5] and digital audio/video broad-

casting [6].

Denote by {X(k)}N−1
k=0 the frequency domain OFDM signal

drawn from a known constellation C, and N is the number of sub-

carriers. Nyquist-rate sampled time domain OFDM signal is rep-

resented as

x(n) =
1√
N

N−1∑
k=0

X(k) ej 2πkn
N , 0 ≤ n ≤ N − 1. (17)

It is well-known that |x(n)| exhibits high peaks, especially for N
large [3].

Suppose that the nonlinear transformation (12) is applied to

(17) and we receive y(n) = g(x(n)) + v(n) = αx(n) + d(n) +
v(n). In the frequency domain, we have Y (k) = αX(k)+D(k)+
V (k). From (13), α is known once Amax/σx and γ are available.

Since X(k) belongs to a known constellation C, and the distortion

mechanism g(·) is known, both the symbols X(k) and the dis-

tortion term d(n) can be iteratively estimated. Similar to [7], we

adopt the following iterative symbol detection algorithm:

Initialize with q = 0, D(0)(k) = 0, for k = 0, . . . , N − 1.

X(q+1)(k) = arg min
X(k)∈C

|Y (k) − D(q)(k) − α X(k)|2, (18)

x(q+1)(n) =
1√
N

N−1∑
k=0

X(q+1)(k) ej2πnk/N , (19)

d(q+1)(n) = y(n) − αx(q+1)(n), (20)

D(q+1)(k) =
1√
N

N−1∑
k=0

d(q+1)(n) e−j2πnk/N . (21)

The difference between the above algorithm and [7] is that in the

above algorithm, α is taken in to consideration, whereas in [7], α
is set to 1, which is appropriate only when mild clipping is applied.
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4. SIMULATIONS

For both examples, we generated the QPSK sequence {X(k)}N−1
k=0

with N = 512 and X(k) ∈ C = {σxe±j π
4 , σxe±j 3π

4 }. Amax of

the system is obtained from (8) with ε = 0.01. We obtained x(n)
according to (17). Afterwards, the soft limiter with gain in (12)

is applied. White complex Gaussian noise v(n) is then added to

g(x(n)) to produce y(n). What we refer to as unclipped OFDM

is actually g(x(n)) in (12) with G = 1 (or A = Amax).

Example 1. The benefit of clipping with an SNR-adaptive γ∗.

If we treat the distortion as a part of the noise, we can apply a

simple QPSK decoder; i.e., (18) with q = 0 (no iterations):

X(1)(k) = arg min
X(k)∈C

|Y (k) − α X(k)|2. (22)

We compare X(1)(k) with X(k) to calculate the SER.

Fig. 5 shows the SER for unclipped QPSK-OFDM, clipping

with fixed γ = 0.5, 0.7, . . . , 1.7, and clipping with the optimal

γ∗ as shown in Fig. 4. We see from Fig. 5 that SNR-adaptive clip-

ping consistently outperforms the unclipped one; the SNR gain

was 5.5 dB at the SER = 10−4 level. With a fixed clipping ra-

tio γ, SER improvements were obtained at low SNR levels, but

SER deteriorations occurred at high SNR. Note that no additional

complexity, as compared to the unclipped case, is required for the

decoder in (22).
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Fig. 5. SER vs. SNR curves for unclipped OFDM, clipped OFDM

with γ = 0.5, 0.7, . . . , 1.7, and clipped OFDM with γ = γ∗.

Example 2. The benefit of clipping noise mitigation.

For Fig. 6, we implemented the iterative procedure (18)-(21),

for soft clipping (12) with a fixed γ = 0.6. SER is calculated by

comparing X(q+1)(k) with X(k) for q = 0, 1, 2, 3, and 10. For

comparison purposes, we also show SER of the unclipped OFDM

signal, and that corresponding to clipped OFDM with the opti-

mal γ∗ but without iterations (as in Example 1). From Fig. 6, we

see that even with a fixed γ, SER can be significantly improved

from the unclipped case, if iterative clipping noise mitigation is

performed at the receiver. At the SER = 10−4 level, an SNR

gain of 8.5 dB was achieved. The result is even better than us-

ing the optimal γ∗ but without iterations. We also observe that

at low SNRs, iterations offer little improvement since the starting

estimate X(1)(k) is often poor.
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Fig. 6. SER for unclipped OFDM; clipped OFDM with γ = 0.6
for iterations 0, 1, 2, and 10; and clipped OFDM with γ = γ∗.

5. CONCLUSIONS

In this paper, we proposed a baseband nonlinear transformation

technique to improve the overall communication system perfor-

mance, under the peak power constraint. A closed-form expres-

sion is derived for the SNDR of certain nonlinear transformations.

A strategy for SNR-adaptive optimum clipping is proposed. For

OFDM with soft clipping, we showed that the optimal clipping

ratio leads to an SNDR improvement of 5-7 dB and accompany-

ing decrease in SER. By applying an iterative symbol detection

and clipping noise mitigation algorithm at the receiver, we demon-

strated that clipping in OFDM can be very beneficial.
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