
SENSITIVITY ANALYSIS OF TIME ENCODED BANDLIMITED SIGNALS

Aurel A. Lazar

Department of Electrical Engineering
Columbia University, New York, NY 10027

aurel@ee.columbia.edu

László T. Tóth
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ABSTRACT

A Time Encoding Machine consisting of a feedback loop contain-
ing an adder, an integrator and a Schmitt trigger encodes amplitude
information into a time sequence. We demonstrate how to con-
struct a Time Decoding Machine that perfectly recovers the ampli-
tude information from the time sequence and is trigger parameter
insensitive.

We derive bounds on the error in signal recovery introduced
by the quantization of the time sequence. We compare these with
the recovery error introduced by the quantization of the amplitude
of the bandlimited signal when irregular sampling is employed.
Under Nyquist-type rate conditions, quantization of a bandlimited
signal in the time and amplitude domains are shown to be largely
equivalent methods of information representation.

1. INTRODUCTION

A time encoding of a bandlimited function x(t), t ∈ R, is a repre-
sentation of x(t) as a sequence of strictly increasing times (tk), k ∈
Z, where R and Z denote the set of real numbers and integers, re-
spectively. Alternately, the bandlimited function is encoded as a
digital signal z(t) that switches between two values ±1 at times
tk, k ∈ Z. A Time Encoding Machine (TEM) is a real-time asyn-
chronous mechanism for encoding amplitude information into a
time sequence. A Time Decoding Machine (TDM) recovers the
amplitude information from the time sequence.

In [3] a TEM amenable to nano-scale integration was investi-
gated. The machine consists of a feedback loop that contains an
adder, a linear filter and a non-inverting Schmitt trigger (see Fig-
ure 1). It was shown there, that the amplitude information of the
encoded signal x(t), t ∈ R, can be perfectly recovered from the
sequence (tk), k ∈ Z, provided that the difference between any
two consecutive values of the time sequence is bounded by the in-
verse of the Nyquist rate. This has established time encoding as an
information representation modality for bandlimited signals.

In practice, the question of sensitivity of the recovery algo-
rithm with respect to parameter variation of the TEM is of outmost
importance. In this paper we investigate the sensitivity of signal
recovery with respect to the Schmitt trigger parameter δ as well as
with respect to the number N of bits used to quantize the values of
the trigger times.

Through simple simulations we demonstrate that the TDM
that implements the perfect recovery algorithm is highly sensitive
to a broad range of values of δ. Based on the simple compensa-
tion principle of [3] we provide a perfect recovery algorithm that
is δ-insensitive.

We evaluate the error introduced by the quantization of the
time sequence and derive bounds on the recovery error. We com-
pare these with the recovery error introduced by the quantization
of the amplitude of an arbitrary bandlimited signal when irregular
sampling is employed. Under Nyquist-type rate conditions, quan-
tization of a bandlimited signal in the time and amplitude domains
are shown to be largely equivalent methods of information repre-
sentation.

This paper is organized as follows. Time encoding and perfect
recovery algorithms are reviewed in section 2. Section 3 investi-
gates the sensitivity of the recovery algorithm with respect to the
Schmitt trigger parameter δ. The Compensation Principle is used
to build a δ-insensitive recovery algorithm. The effect of quanti-
zation of the trigger times on signal recovery is discussed in sec-
tion 4. Finally, in section 5 the effects of quantization in the time
and amplitude domains on the recovery of bandlimited signals are
compared.

2. TIME ENCODING AND PERFECT RECOVERY

The TEM considered in this paper is an (essentially) equivalent
version of the one investigated in [3] (see Figure 1). The input
signal to the TEM is modelled as a Lebesgues measurable function
x = x(t), t, t ∈ R, in L2. Furthermore, x is bounded, |x(t)| ≤
c < 1, and bandlimited to [−Ω, Ω].
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Fig. 1. The Time Encoding Machine

The output of the TEM is a function z taking two values z :
R → {−1, 1} for all t, t ∈ R, with transition times (tk), k ∈ Z,
generated by the recursive equationsZ tk+1

tk

x(u)du = (−1)k[δ − (tk+1 − tk)], (1)

for all k, k ∈ Z. Intuitively, these equations map the amplitude
information of the signal x(t), t ∈ R, into the time sequence (tk),

II - 9010-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



k ∈ Z, and implicitly define a signal-dependent sampling mecha-
nism.

Let xl = xl(t), t ∈ R, be a sequence of bandlimited functions
defined by the recursion:

xl+1 = xl + A(x − xl), (2)

for all l, l ∈ N, with the initial condition x0 = Ax, where the
operator A is given by:

Ax =
X
k∈Z

Z tk+1

tk

x(u)du g(t − sk)

=
X
k∈Z

(−1)k[δ − (tk+1 − tk)] g(t − sk),
(3)

with g(t) = sin(Ωt)/πt and sk = (tk+1+tk)/2. In what follows
I and I will denote the identity operator and the identity matrix,
respectively. In [3] the following TDM perfect recovery algorithm
was derived (The most general recovery result only requires that
the average number of trigger times is bounded by the inverse of
the Nyquist rate [2]. However, this result lacks operational signifi-
cance in our setting.):

Theorem 1 (Operator Formulation) If r = δ
1−c

Ω
π

< 1, the
bandlimited signal x can be perfectly recovered from the trigger
times (tk), t ∈ Z, as

lim
l→∞

xl(t) = x(t) =
X
k∈N

(I −A)kAx, (4)

and
‖ x − xl ‖≤ rl+1 ‖ x ‖ . (5)

With g = [g(t − sk)] and q = [(−1)k(δ + tk − tk+1)] denoting
vectors and G = [

R tl+1

tl

g(u−sk) du] denoting a matrix, we have
the following

Theorem 2 (Matrix Formulation) If r = δ
1−c

Ω
π

< 1, the ban-
dlimited signal x can be perfectly recovered from the trigger times
(tk), t ∈ Z, as

x(t) = lim
l→∞

xl(t) = g
T
G

+
q. (6)

where G+ denotes the pseudo-inverse of G. Furthermore, xl(t) =

gT Plq, where Pl =
Pl

k=0(I −G)k .

Remark 1 If c = [ck] is the vector defined by c = G+q then the
recovery formula (6) becomes

x(t) =
X
k∈Z

ckg(t− sk). (7)

Therefore, the recovery algorithm given by equation (6) has a very
simple interpretation. Dirac–delta pulses generated at times sk

with weight ck are passed through a low pass filter with unity gain
for ω ∈ [−Ω, Ω] and zero otherwise. For a precise definition and
motivation of the pseudo-inverse the reader is referred to [5].

3. RECOVERY SENSITIVITY WITH RESPECT TO δ

In this section we will first demonstrate the high sensitivity of the
perfect recovery algorithm with respect to implementation errors
of the parameter δ in the TDM. We will then demonstrate how this
can be overcome and advance a δ-insensitive recovery algorithm.

3.1. δ with a fixed error ε at the TDM

The model considered in this section is based on the premise that
the TEM is employing δ and the TDM implements δ + ε and has
exact knowledge of the trigger times. The reconstruction algorithm
consistently generates an error signal e given by:

e(t) = x(t) − x̂(t) =
X
k∈N

(I −A)kε
X
l∈Z

g(t − sl), (8)

where x̂ is the output of a TDM that uses δ + ε for recovery.
In what follows we define a mean-square error measure E2 as

E2 = lim
n→∞

1

2nTmin

‖ e1[−nTmin,nTmin] ‖
2, (9)

where 1 denotes the indicator function,

‖ e1[−nTmin,nTmin] ‖
2=

Z
R

e2(u)1[−nTmin,nTmin](u)du,

(10)
and Tmin = mink∈Z Tk with Tk = tk+1 − tk.
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Fig. 2. The dependence of E on δ parameterized by ε = 10−2δ
(stars) and ε = 10−3δ (squares).

Example 1 A sample of the dependance of the mean square re-
covery error on δ parameterized by ε is shown in Figure 2. In all
our simulations, the input signal is given by x(t) =

P
k∈Z

x(kT )g(t−
kT ) where the samples x(T ) through x(12T ), are respectively, -
0.1961, 0.186965, 0.207271, 0.0987736, -0.275572, 0.0201665,
0.290247, 0.138374, -0.067588, -0.145661, -0.11133, -0.291498,
x(kT ) = 0, for k ≤ 0 and k > 12; c = 0.3, Ω = 2π · 40 kHz
and T = π/Ω = 12.5 µs. The evaluation of the trigger times was
carried out in the interval −2T ≤ t ≤ 15T .

3.2. δ-Insensitive Recovery Algorithm

As shown in Figure 2, the implementation of the TDM recovery al-
gorithm given in Theorem 2, is highly sensitive to the exact knowl-
edge of the parameter δ. Remedy is provided by the following [3]

Lemma 1 (The Compensation Principle)
Z tl+2

tl

x(u)du = (−1)l[(tl+2 − tl+1) − (tl+1 − tl)], (11)

for all l ∈ Z.
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Proof: The desired result is obtained by adding equations (1) for
k = l and k = l + 1.

The Compensation Principle suggests the construction of an
operator of the form

Bx =
X
k∈Z

Z tk+2

tk

x(u)du fk+1(t)

=
X
k∈Z

Z tk+1

tk

x(u)du [fk(t) + fk+1(t)].

(12)

The operators A and B are identical provided that g = BT f ,
where f = [fk] and the elements of the matrix B are given by
[B]k,l = 1 for k = l or k = l + 1 and zero otherwise. Note that,
the inverse of B is given by [B−1]k,l = (−1)k−l for k ≥ l and
zero otherwise. Note also that

Bq = [(−1)k(tk+2 − 2tk+1 + tk)]

does not explicitly depend on δ.

Theorem 3 (δ-insensitive recovery algorithm - matrix form) If
r = δ

1−c
· Ω

π
< 1, the bandlimited signal x can be perfectly recov-

ered from its associated trigger times (tk), k ∈ Z, without explicit
knowledge of the parameter δ as

x(t) = lim
l→∞

xl(t) = g
T · B−1(BGB

−1)+ · Bq. (13)

Furthermore,
xl(t) = g

T · B−1
Ql ·Bq, (14)

where Ql is given by

Ql =

lX
k=0

[I− BGB
−1]k. (15)

Proof: Using the notation of Theorem 2, xl can be re-written as

xl(t) = g
T
Plq = g

T ·B−1(BPlB
−1) · Bq.

Since

BPlB
−1 = B

lX
k=0

(I− G)k
B

−1 =

lX
k=0

(I− BGB
−1)k

we have (see [5] for the introduction of the pseudo-inverse)

x(t) = lim
l→∞

g
T ·B−1

lX
k=0

(I− BGB
−1)k ·Bq

= g
T ·B−1(BGB

−1)+ ·Bq.

(16)

Example 2 The δ-insensitive recovery algorithm achieves perfect
recovery provided that r < 1. Simulation results for the δ-sensitive
and δ-insensitive recovery algorithms are shown in Figure 3 and
are denoted by stars and squares, respectively. The dotted vertical
line corresponds to the value of δ for which r = 1.

4. RECOVERY SENSITIVITY WITH RESPECT TO TIME
QUANTIZATION

In this section we shall assume that the sequence of trigger times
(tk), k ∈ Z, is measured with finite precision and the actual values
available for recovery are t̂k, k ∈ Z. We shall denote by Tk =

tk+1 − tk and T̂k = t̂k+1 − t̂k for all k ∈ Z.
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Fig. 3. Mean square error for the δ-sensitive (stars) and δ-
insensitive algorithms (squares).

4.1. An Upper Bound on a Measure of Error Recovery

The key point of our analysis is the observation that, if the condi-
tion maxk(T̂k < T ) is satisfied, then

x =
X
k∈N

(I − Â)kÂx,

where Â is defined by

Âx =
X
k∈Z

Z t̂k+1

t̂k

x(u)du g(t − ŝk) (17)

and ŝk = (t̂k + t̂k+1)/2. Since the reconstructed signal is given
by

x̂ =
X
k∈N

(I − Â)k
X
l∈Z

[(−1)l(−T̂l + δ)]g(t − ŝl),

the error signal amounts to

e(t) =
X
k∈N

(I − Â)k
X
l∈Z

εlg(t − ŝl), (18)

where

εk = (−1)k(−T̂k + δ) −

Z t̂k+1

t̂k

x(u)du. (19)

Proposition 1 Assuming that the quantization error dk = T̂k −
Tk, k ∈ Z, can be modelled as a sequence of i.i.d. random vari-
ables on [−∆/2, ∆/2], the expected MSE is bounded by:

E{E2} ≤
1 + c

δT
· (

1 + c

1 − r
)2 ·

∆2

12
. (20)

Proof: See [4].

5. A COMPARISON OF TIME AND AMPLITUDE
QUANTIZATION

In this section we highlight the relationship between time encod-
ing and irregular sampling, i.e., between two information repre-
sentations of a bandlimited signal as a discrete time and a discrete
amplitude sequence, respectively.
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5.1. Relationship to Irregular Sampling

In what follows we shall assume that the irregular samples (x(sk)),
k ∈ Z, are available for signal reconstruction. xl = xl(t), t ∈ R,
will denote a sequence of bandlimited functions defined by the re-
cursion:

xl+1 = xl + S(x − xl), (21)

for all l, l ∈ N, with the initial condition x0 = Sx, where the
operator S is given by

Sx =
1

1 + r2
·
Ω

π

X
k∈Z

Tkx(sk)g(t − sk). (22)

The relevance of S in our context is provided by the following
theorem [1]:

Theorem 4 (Reconstruction from Irregular Samples) If r = δ
1−c

·
Ω
π

< 1 the bandlimited signal x can be perfectly recovered from
its samples (x(sk)), k ∈ Z, as

lim
l→∞

xl(t) = x(t), (23)

and ‖ x − xl ‖≤ ( 2r

1+r2 )l+1 ‖ x ‖ .

Proof: See [1], Theorem 6.

Remark 2 A key difference between irregular sampling and time
encoding derives from the functional relationship between the trig-
ger times (tk), k ∈ Z, and the associated time sequence (sk), k ∈
Z, on the one hand and the bandlimited signal on the other. In the
case of time encoding, the tk’s are signal dependent. This is clearly
underscored by equation (1). For irregular sampling, however, the
sk’s are, in general, signal independent.

5.2. Upper Bound for the Amplitude Quantization Error

Assume that the instances sk are exactly known and the ampli-
tudes x(sk) are corrupted by a sequence of random variables εk to
x(sk) + εk.

Proposition 2 If the random variables (εk), k ∈ Z, are indepen-
dent uniformly distributed within [−ε/2, ε/2] then

E{E2} ≤
r

(1 − r)2
1 + c

1 − c

ε2

12
. (24)

Proof: See [4].

Example 3 A reasonable comparison between the effects of am-
plitude and time quantization can be established if we assume that
the quantized amplitudes and quantized trigger times are transmit-
ted at the same bitrate. Since x(sk) and Tk are associated with the
trigger times tk and tk+1, the same transmission bitrate is achieved
if the x(sk)’s and the Tk’s are represented by the same number
of bits N . With −c ≤ x ≤ c, the amplitude quantization step
amounts to ε = 2c/2N .

For time encoding Tmin = mink∈Z Tk ≤ Tk ≤ maxk∈Z Tk =
Tmax, or equivalently 0 ≤ Tk − Tmin ≤ Tmax − Tmin. Therefore, if
Tmin is exactly known, then only measuring Tk − Tmin, k ∈ Z, in
the range (0, Tmax − Tmin) is needed. Hence:

∆ =
Tmax − Tmin

2N
=

1

2N
(

δ

1 − c
−

δ

1 + c
) =

δε

1 − c2
.

Substituting the values of ε and ∆ above into (20) and (24) results
exactly in the same upper bound for both the expected mean square
error for time encoding and irregular sampling, respectively.
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Fig. 4. The dependence of E on the number of quantization bits
for time encoding (stars) and irregular sampling (squares).

Figure 4 shows the mean square error E as a function of the num-
ber of quantization bits, N . The details of the simulation are as
before. Squares and stars depict the mean square error for time en-
coding and irregular sampling, respectively. Figure 4 also depicts
the (same) upper bound, UB, arising in inequality (20) and (24).

6. CONCLUSIONS

In this paper we have further established time encoding as an al-
ternative information representation modality for bandlimited sig-
nals. We have shown how to construct a TDM that only depends
on the time sequence generated by the TEM. No additional knowl-
edge about the parameters of the TEM is required.

We derived an upper bound on the expected mean square error
of signal recovery when a quantized version of the trigger times is
available. We have also shown that quantization in the time and
amplitude domains leads to largely equivalent methods of infor-
mation representation.
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