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ABSTRACT

We introduce a generalized definition for “low-pass” filters
that covers time-varying and nonlinear systems under the
same umbrella. We show that the qualitative concept of
signal smoothing can be made precise through the concept
of contractions in probabilistic metric spaces. For illustra-
tion, we consider classical linear time-invariant low-pass fil-
ters, the nonlinear median filters, and time-varying guaran-
teed maximum delay schedulers employed in communica-
tion systems.

1. INTRODUCTION

Linear filters have played a central role in the history of
signal processing and communications. Thanks to their
strong theoretical basis and computational efficiency, lin-
ear filters have dominated over nonlinear and time-varying
filters. However, despite their elegant theory, linear filters
do not satisfactorily address all signal processing problems.
Unfortunately, it has been difficult to design, optimize, and
evaluate the performance of the non-linear and time-varying
systems due to the lack of a sound underlying theory.

In this paper, we take a fresh look at low-pass systems,
introducing a new definition that extends directly to non-
linear and time-varying filters. Interestingly, the definition
is based on random signals and contractions in probabilistic
metric spaces. This work can be considered as a step to-
ward a unified theory of linear, nonlinear, and time-varying
filtering.

Using our definition, we study three classes of low-pass
systems: standard linear time invariant (LTI) filters, median
filters [1–3], and schedulers that guarantee a maximum de-
lay in a communication system [4]. It has been shown that
schedulers act like filters that are not necessarily linear or
time-invariant.

This paper is organized as follows: In Section 2, we pro-
vide some intuition toward our general definition of low-
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pass filters. Then, we present a fundamental property of
low-pass filters that leads to our main result. In Section 3,
we show how conventional low-pass LTI systems are char-
acterized by our new approach. In Section 4 we apply the
definition to the above-mentioned nonlinear time-varying
(NLTV) systems. Finally, we conclude in Section 5.

2. CONTRACTION AND LOW-PASS SYSTEMS

The superposition principle does not hold in nonlinear sys-
tems. Indeed, a non-linear or time-varying system output
can even contain frequencies not present in the input sig-
nal. Hence, it is not possible to analyze the behavior of the
output signal of a non-linear system by means of a signal
decomposition. Rather, the behavior in response to all pos-
sible inputs should be considered in order to characterize a
system as low-pass. The approach we will pursue uses a
class of stochastic input sequences to characterize systems.

The present definition of a low-pass systems is more
qualitative than quantitative. We typically deem a system
low-pass when it “reduces noise” and the output is (in some
sense) “smoother” than input. Moreover, most definitions of
low-pass filters [5] use the notion of the frequency response
(decay at high frequencies) or pole-zero representation of
the filter and therefore are specific to LTI systems.

The notion of signal smoothness has been defined in dif-
ferent ways. The local monotonicity [6] or differentiabil-
ity order of a signal [7] are examples of such definitions.
A higher differentiability order of a wavelet function cor-
responds to a larger number of vanishing moments, which
can be considered as a measure of smoothness [7]. There
is an interesting connection between low-pass systems and
the concept of a contraction in a probabilistic metric space.
(We will focus on discrete-time signals and systems.) We
consider the system responses to all possible stationary and
white stochastic input sequences X[t], which are fully char-
acterized by their first order statistics (pdf) fX(x). We as-
sume that the output signal Y [t] of the system to the station-
ary input is a stationary random process; let fY (y) denote
its first order statistics (pdf).

Considering just the first order statistics of the input and
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output signals, it can be shown that for any low-pass LTI
system the output space is a probabilistic contraction of the
input space when the input and the output signal powers are
normalized along their respective means. This metric-space
contraction is defined as a mapping G(x) : X −→ Y , such
that

∃0 < γ < 1∀x1, x2 ∈ X :
||G(x1) − G(x2)|| < γ ||x1 − x2||. (1)

The generalization of a contraction mapping to a proba-
bilistic metric space is considered by Chang et. al. in [8, 9].
We consider a simple measure of probabilistic contraction

∀fX(x) : E[ηY ] ≤ E[ηX ] (2)

where η ∈ R, η > 1, and Y is the random variable rep-
resenting the output of the system at any given time. Note
that for a stationary white input process, the output of an
LTI “low-pass” filter (defined as in [5]) has smaller varia-
tion. Therefore, we see that LTI low-pass filters correspond
to contractions. Furthermore, we will show below that any
LTI system having this contraction property is a low-pass
filter (Theorem 2 specifically considers FIR filters). Thus,
we can conclude that an LTI system is low-pass if its re-
sponse to a stationary white input process is a stationary
output process for which the output space is a contraction
of the input space.

This same notion can be easily extended to nonlinear or
time-varying (NLTV) systems. We will consider two im-
portant examples in this class, namely median filters and
scheduling systems. In both cases, we show that the con-
traction principle holds, which leads us to conclude that
these non-linear systems are low-pass in nature.

Formally, we define a low-pass system as:

Definition 1 (Low-pass) A system that has stationary out-
put Y for every stationary white input X is defined to be
low-pass if (i) ∀fX(x) : µX �= 0 ⇒ µY �= 0, and

(ii) ∀fX(x) : E[ηkY ] ≤ E[ηX ] (3)

where η ∈ R and η > 1. Also, µX = E[X], µY = E[Y ],
and k is a scaling constant such that kµY = µX .

Let |HX(f)|2 denote the ratio of the output Fourier
spectrum to the input spectrum for a given input distribu-
tion. Then the first condition of the definition can be inter-
preted as |HX(0)|2 �= 0. The fact that scaling should not
change the low-pass nature of a filter has been captured by
the constant k.

3. LTI LOW-PASS FILTERS AND THE DEFINITION

Proposition 1 Any weighted moving average filter with
positive weights is a low-pass system under Definition 1.

Proof: Consider a weighted linear filter of the form

Y [t] = a1X[t] + a2X[t − 1] + . . . + anX[t − n + 1] (4)

with the filter weights ai, i = 1, . . . , n. From the first con-
dition of Definition 1 we have

∑n
i=1 ai �= 0. Thus, without

loss of generality we assume that
∑n

i=1 ai = 1 by choosing
an appropriate scaling factor k. Then, We have

E[ηY [t]] = E[ηa1X[t]+a2X[t−1]+...+anX[t−n+1]] (5)

= E[ηa1X[t]]E[ηa2X[t−1]] . . . E[ηanX[t−n+1]] (6)

= E[ηa1X[t]]E[ηa2X[t]] . . . E[ηanX[t]] (7)

≤ E
a1 [ηX[t]]Ea2 [ηX[t]] . . . Ean [ηX[t]] (8)

= E
a1+a2+...+an [ηX[t]] = E[ηX[t]] (9)

where (6) holds because the input process is white and (7)
holds thanks to its stationarity. Also, since the coefficients
are all positive and sum to one, we have 0 ≤ ai ≤ 1 for all
i = 1, 2, . . . , n. Thus, (8) is clear from the application of
the Jensen’s inequality. �

On the other hand we can show that any FIR filter satis-
fying Definition 1 must be a low-pass.

Proposition 2 Any FIR filter satisfying Definition 1 is a
low-pass filter in the conventional sense (see [5], for ex-
ample).

Proof: Consider an FIR filter defined as

Y [t] = a1X[t] + a2X[t− 1] + . . . + anX[t−n + 1] (10)

where ai, i = 1, . . . , n are the filter coefficients. As dis-
cussed in the proof of Proposition 1, without loss of gener-
ality we assume that

∑n
i=1 ai = 1. We now show that if the

filter (10) satisfies the Definition 1, then 0 ≤ ai ≤ 1 for all
i = 1, 2, . . . , n. We prove this by contradiction. Assume
that the filter satisfies Definition 1 and that the maximum
value of its coefficients is aj with aj > 1. Consider a dis-
crete input distribution where xmax is the maximum value
of the random variable X that has nonzero probability. Con-
sider both E[ηY [t]] and E[ηX[t]] as functions of xmax. We
have

E[ηY [t]] = E[ηa1X[t]+a2X[t−1]+...+anX[t−n+1]] (11)

= E[ηa1X[t]]E[ηa2X[t−1]] . . . E[ηanX[t−n+1]] (12)

= O(ηajxmax). (13)

On the other hand, E[ηX[t]] = O(ηxmax). Since we as-
sumed that aj > 1, for large enough xmax we have that
E[ηY [t]] > E[ηX[t]]. Therefore, there exists a distribution
for the input process X[t] such that xmax is large enough
such that it leads to a contradiction.
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Now, let the minimum value of the filter coefficients be
aj . We can follow the same line of argument to show that
if aj < 0 then filter does not satisfy Definition 1. Consider
a discrete input distribution where xmin < 0 is the mini-
mum value of the random variable X which has nonzero
probability. Consider both E[ηY [t]] and E[ηX[t]] as a func-
tion of xmin. As in (11-13), we can show that E[ηY [t]] =
O(ηajxmin). On the other hand, E[ηX[t]] = O(ηxmin). Since
we assumed that aj < 0 and also that xmin < 0 for large
enough |xmin| we have E[ηY [t]] > E[ηX[t]]. Therefore,
there exists a distribution for input process X[t] such that
|xmin| is large enough such that it leads to a contradiction.

Thus, we have proved that 0 ≤ ai ≤ 1 for all i =
1, 2, . . . , n, which means that the filter is a weighted moving
average filter that is low-pass in the conventional sense [5].
�

It should be noted that Definition 1 does not subsume
all known linear low-pass filters. A better choice of convex
function c(x) instead of c(x) = ηx might lead to a better
characterization of low-pass filters. However, could make
the analysis more complicated. An example of such a con-
vex function is

c(x) =
{

ex − 1 x > 0
−ln(1 − x) x ≤ 0.

(14)

It is easily verified that the second derivative of this function
exists and is always positive; that is, the function is strictly
convex. Furthermore, it has attractive property of being in-
finitely differentiable.

4. NLTV LOW-PASS FILTERS AND THE
DEFINITION

Definition 1 provides a framework to evaluate the low-pass
characteristics of an extensive class of nonlinear and time-
varying filters. In this section we present two examples of
systems that should be rated in the class of low-pass filters.
We discuss how Definition 1 leads to such characterizations.

4.1. Median filters

Median filters are used widely in signal processing, espe-
cially in image processing for noise reduction as opposed
to linear smoothing filters. The reason is that median fil-
ters tend to preserve the sharpness of image edges while
removing noise [1, 3]. Median filters can be extended to
weighted median filters, center weighted median filters, and
max-median filters [2, 3].

Proposition 3 Median filters are low-pass in the sense of
Definition 1.

Proof: Because of space limitations we present only
a sketch of the proof. Consider a median filter of length n

defined as

Y [t] = median(X[t], X[t − 1], . . . , X[t − n + 1]). (15)

Since the input process is white with distribution fX(x),
the output at time t is simply the median of n independent
samples of X , say X1, X2, . . . , Xn, defined as

X̃ =
{ 1

2 (X( n
2 ) + X( n

2 +1)) if n is even
X( n+1

2 ) if n is odd (16)

where X(1), X(2), . . . , X(n) denote the order statistics of the
random sample X1, X2, . . . , Xn. The distribution of the
order statistics for continuous random variable X with cdf
FX(x) and pdf fX(x) is given by

fX(j) =
n!

(j − 1)!(n − j)!
fX(x)[FX(x)]j−1[1−FX(x)]n−j

(17)
Thus, the distribution of the output of a median filter of

length n can be written in the form fY (x) = fX(x)g(x).
It is not difficult to show that g(x) is an increasing func-
tion for x ∈ (−∞, xmedian] and a decreasing function for
x ∈ [xmedian,∞). Thus, the distribution of the output
Y [t] = X̃ is more concentrated toward the median of the in-
put distribution, xmedian. Considering any strip [y, y + dy)
of the output pdf there are two strips of [x1, x1 + dx) and
[x2, x2 + dx) of the input pdf such that their probabilities
sum up to the probability of the strip [y, y + dy) and also
x1 < y < x2. Because of the convexity of the function ηX

in Definition 1, the expected value of ηy over the interval
[y, y + dy) is smaller than the expected value of ηx over the
two intervals [x1, x1 + dx) and [x2, x2 + dx). Therefore,
the summation over the domain of the output pdf function
fY (y) gives the desired result. �

The same analysis can be performed for weighted me-
dian filters [2] and center weighted median filters [3] to
show that both are low-pass.

4.2. Schedulers Guaranteeing a Maximum Delay

Most multimedia sources are bursty in nature, a property
that can be used to trade queuing delay for reduced average
transmission power [10]. Scheduling deals with the prob-
lem of how to choose the output service rate of the queues
based on the input arrivals in order to optimize the use of
system resources, usually average power, while maintaining
some quality of service (QoS requirements), usually packet
delays. In [4], a connection between filtering and schedul-
ing with a guaranteed maximum delay Dmax has been es-
tablished. It has been shown that the necessary and suffi-
cient conditions for any scheduler that guarantees a maxi-
mum delay Dmax are given by these inequalities

t+k∑
i=t

X[i] ≤
t+k+Dmax−1∑

i=t

Y [i], (18)
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t+k∑
i=t

Y [i] ≤ B[t] +
t+k∑
i=t

X[i], (19)

for any t and k where X[t] is the rate of the input arrival
to the queue, Y [t] is the output service rate of the queue,
and B[t] is the queue backlog at time t. Based on these
conditions, it has been shown that if the scheduler is time
invariant, then the scheduler is always low-pass [4]. This
property has an attractive interpretation in terms of power-
efficiency. It is intuitive that additional delay helps to reduce
the required average power for the scheduler by smoothing
the input arrival process via queuing.

The same story is not true for the NLTV schedulers. In
fact, it is possible to imagine an intuitively high-pass NLTV
filter that guarantees the same maximum delay. However,
with the general Definition 1, we can show that the optimal
(not necessarilty LTI) scheduler is also low-pass. In fact,
the required average power of the scheduler is proportional
to

lim
N→∞

1
N

N∑
t=1

2Y [t] (20)

which can be written in the form E[2Y ] under stationary
conditions. Considering the fact that the optimal scheduler
has the minimum average power, we have

E[2Y ] ≤ E
Dmax [2X/Dmax ], (21)

where E
Dmax [2X/Dmax ] is the required average power of a

simple moving average filter of size Dmax. Thus, based on
Jensen’s inequality, we have

E[2Y ] ≤ E
Dmax [2X/Dmax ] ≤ E[2X ] (22)

which means that the optimal scheduler satisfies the second
condition of Definition 1. Also, since we assume that all
packets will be delivered with maximum delay of Dmax and
that no packets will be dropped, the average input arrivals
is equal to the average output service rates. In other words,
every packet that arrives at the queue eventually exits the
queue. Thus, the first condition is also satisfied.

Furthermore, if a scheduler requires power P1 to guar-
antee a maximum delay Dmax and is low-pass under Defi-
nition 1, then any scheduler that guarantees the same max-
imum delay Dmax with lower power P2 < P1 is also low-
pass. In other words, it is impossible to beat the perfor-
mance of a low-pass scheduler with a scheduler that is not
low-pass. This property again confirms the intuition behind
the fact that the output of the optimal scheduler is smoother
than the input.

5. CONCLUSIONS

We have developed a general framework to help understand
and unify LTI and NLTV low-pass systems. This work is

only the first step toward a complete characterization; there
is still much more to be done. A good next step would be
to consider the second-order temporal dependencies of the
input and output signals, which we have not considered in
this paper.
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