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ABSTRACT
Fuzzy ranks are a component of fuzzy ordering theory developed
to incorporate sample spread information into sample ranking. In
this paper, the well-known lower-upper-middle (LUM) filters are
generalized by utilizing the fuzzy ranks, which is called fuzzy LUM
(F-LUM) filters. We develop the statistical and deterministic prop-
erties of the F-LUM filters and present their performance in image
denoising and enhancing applications. As shown by the experi-
mental results, the F-LUM filters inherit the simplicity and versa-
tility of the LUM filters such that they can perform signal smooth-
ing, sharpening and outlier rejection using a single filter structure,
while having great improvement in detail preservation and robust-
ness to noise.

1. INTRODUCTION

The fuzzy ordering theory was developed to jointly utilize the sam-
ples’ spatial, rank-order and spread (or diversity) information in
signal filtering [1, 2]. The theory introduces a real-valued (instead
of binary) spatial-rank (SR) matrix to describe the relationship be-
tween each spatial sample and order statistic. This matrix is called
fuzzy SR matrix, based on which the concepts of fuzzy samples,
fuzzy order statistics and fuzzy ranks are developed. In our previ-
ous work [2, 3, 4, 5, 6], fuzzy samples and fuzzy order statistics
are exploited to generalize a series of conventional filters, such as
identity, median, weighted median and rank condition rank selec-
tion (RCRS) filters. These generalized filters have demonstrated
good performance in a wide range of applications such as image
denoising, zooming, sharpening and deblocking.

Similar to the fuzzy samples and fuzzy order statistics, fuzzy
ranks also possess interesting properties such that they represent
not only the rank-order information but also the spread informa-
tion. Nevertheless, fuzzy ranks haven’t been fully investigated or
utilized. Therefore, we are motivated to exploit them in generaliz-
ing other rank-order-based filters.

A well-known class of rank-order-based filters are the lower-
upper-middle (LUM) filters [7], whose output is defined by

y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k), xc < x(k),
x(l), x(l) < xc ≤ tl,

x(N−l+1), tl < xc < x(N−l+1),
x(N−k+1), xc > x(N−k+1),

xc, otherwise,

(1)

where xc is the the center sample in the filtering window of size
N , k ≤ l ≤ (N +1)/2, and tl = (x(l) +x(N−l+1))/2. The LUM
filters can perform purely smoothing, by setting l = (N + 1)/2,
or purely sharpening, by setting k = 1, or a joint function for
other settings. The smoothing and sharpening level can be con-
trolled by adjusting the parameters k and l, respectively. However,

since the LUM filters are based on the samples’ crisp rank-order
information and the choice of filter parameters are confined by the
filtering window size, their flexibility in detail preservation and ro-
bustness to noise are limited. In this paper, we show that by simply
replacing the crisp ranks with the fuzzy ranks, the performance of
the LUM filters can be greatly improved in both aspects without
sacrificing their simplicity or versatility.

2. FUZZY ORDERING THEORY AND FUZZY RANKS

In the fuzzy ordering theory, we consider a spatial ordered sample
vector x� = [x1, x2, . . . , xN ] and its corresponding rank ordered
vector xL = [x(1), x(2), . . . , x(N)], where x(1) ≤ x(2) ≤ · · · ≤
x(N) are the order statistics. The fuzzy SR matrix is defined by

R̃ =

⎡
⎢⎣

R̃1,(1) . . . R̃1,(N)

...
. . .

...
R̃N,(1) . . . R̃N,(N)

⎤
⎥⎦ , (2)

where R̃i,(j) = µR̃(xi, x(j)) ∈ [0, 1], i, j = 1, 2, . . . , N and
µR̃(a, b) is a real-valued membership function that describes the
relationship between the inputs a and b with the following re-
strains:

1. lim|a−b|→0 µR̃(a, b) = 1,

2. lim|a−b|→∞ µR̃(a, b) = 0,

3. µR̃(a1, b1) ≥ µR̃(a2, b2), if |a1 − b1| ≤ |a2 − b2|.
The fuzzy ranks are defined as follows. Let r = [r1, r2, . . . , rN ]

be the rank vector of the crisp samples, where ri is the rank of xi.
Then the fuzzy rank vector r̃ = [r̃1, r̃2, . . . , r̃N ] is defined by
r̃T = R̃�IT , where R̃� is the row normalized fuzzy SR matrix,
and I = [1, 2 . . . N ] is the crisp spatial index vector. Thus, the
expression for the fuzzy rank r̃i is:

r̃i =

∑N
k=1 kR̃i,(k)∑N
k=1 R̃i,(k)

. (3)

The following theorem is proved in our recent work [6]:

Order Invariant Theorem: The fuzzy ranks obey the same order
as the crisp ranks, i.e., r̃i < r̃j if and only if ri < rj , given
that the membership function µR̃(·, ·) is such that C(x, t, ∆t) =
µ

R̃
(x,t+∆t)

µ
R̃

(x,t)
is a monotonically non-decreasing function of x, for

∀ t ∈ R and ∆t ∈ R+.
This theorem implies that the fuzzy ranks and the crisp ranks

represent consistent rank order. Hence, generalizing the rank-order-
based filters by using fuzzy ranks are theoretically justified. In ad-
dition, fuzzy ranks carry the spread information of the crisp sam-
ples, as shown in the following example. Consider two sample
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Fig. 1. Spread information represented by the fuzzy ranks for x�1

and x�2 . (a) r1 and r̃1. (b) r2 and r̃2.

vectors x�1 = [1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 2.5], where there
is no sample outliers, and x�2 = [1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3,
12.4, 12.5], where there are two sample outliers. The crisp rank
vectors of both x�1 and x�2 are r1 = r2 = [1, 2, . . . , 9], while the
fuzzy rank vectors are r̃1=[3.44, 3.63, 3.83, 4.05, 5.69, 5.89, 6.08,
6.26, 6.42] and r̃2 = [3.11, 3.23, 3.37, 3.51, 4.68, 4.84, 4.99, 8.49,
8.50] 1. As shown in Fig. 1, the crisp ranks are independent of the
sample diversity, while the fuzzy ranks reflect both the samples’
rank order and diversity. It is also important to note that similar
samples have similar fuzzy ranks of value approximately equal to
the median of their crisp ranks. For example, in r̃1, all the fuzzy
ranks are around the global median “5”. In r̃2, the first seven fuzzy
ranks are around their local median “4”, while the fuzzy ranks of
the two outliers are around their local median “8.5” (note they are
also very close to the crisp ranks “8” and “9”). These properties
introduce a number of desirable features that can be exploited in
filter generalizations.

3. DEFINITION OF F-LUM FILTERS

The output of the F-LUM filters is defined as follows,

y∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k), r̃c < k,
x(l), l < r̃c < h,

x(N−l+1), N − h + 1 < r̃c < N − l + 1,
x(N−k+1), r̃c > N − k + 1,

xc, otherwise,

(4)

where k ≤ l ≤ h ≤ (N + 1)/2 and r̃c is the fuzzy rank of the
center sample xc.

Similarly to the LUM filter, setting l = h = (N + 1)/2 pro-
duces a F-LUM filter that performs only smoothing and is thus
called F-LUM smoother. It does not modify xc when r̃c falls into
the range [k, N − k + 1]; otherwise, it replaces xc by x(k) or
x(N−k+1) according to which one is closer to xc. The F-LUM
sharpener is defined by setting k = 1. Unlike the LUM sharpener,
the F-LUM sharpener has two parameters l and h, which define
three regions, i.e., [1, l], [N − l+1, N ] and [h, N −h+1]. xc will
not be modified when r̃c is in one of the three regions; otherwise, it
is replaced by x(l) or x(N−l+1) accordingly. For other settings, the
F-LUM filters can perform joint smoothing and sharpening. The

1These fuzzy ranks are computed by using Gaussian membership func-
tion which is defined by µG(a, b) = exp[−(a − b)2/(2σ2)], the spread
parameter σ = 1. Gaussian membership function satisfies the order invari-
ant condition.

parameter k controls the smoothing level, l controls the sharpening
level, while the new parameter h is introduced to avoid enhancing
small variations presented in the signal, the advantages of which
will be shown in the following sections.

4. PROPERTIES OF F-LUM FILTERS

The F-LUM filters have a number of desirable deterministic and
statistic properties. In this paper, due to the space constrains, we
only present the impulsive noise breakdown and false-alarm prob-
abilities of the F-LUM smoothers to show their advantages in im-
pulse removal and detail preservation. We also analyze the small
variation preservation property of the F-LUM sharpeners to show
how they prevent the distortion of fine details and false enhance-
ment of noise.

4.1. Breakdown Probability of F-LUM Smoother

The breakdown probability is the probability of outputting an im-
pulse given a certain probability of impulse appearing in the in-
put. It is an indication of the impulse removal capability of a filter.
From the previous example, we can intuitively see that when xc is
an outlier, r̃c is approximately equal to the crisp rank and tends to
be outside of the range [k, N−k+1]. Thus the F-LUM smoothers
have behavior similar to the LUM smoothers. Therefore, they
should have similar breakdown probabilities for the same k.

To prove this, let y be the output of the LUM smoother. When
the positive and negative impulses are equally likely to appear in
the input, the breakdown probability of the LUM smoother is [7]:

Pr(y = ±∞) = 2 · Pr(y = −∞)

= 2 · Pr(xc = −∞)Pr(x(k) = −∞|xc = −∞)

+Pr(xc �= −∞)Pr(x(N−k+1) = −∞|xc �= −∞).

To analyze the breakdown probability of the F-LUM smoother, we
assume µR̃(−∞,−∞) = µR̃(+∞, +∞) = 1, µR̃(−∞, +∞) =
µR̃(±∞, x) = 0, where x �= ±∞. Let y∗ be the output of the
F-LUM smoother. Since Pr(y∗ = ±∞) = 2 · Pr(y∗ = −∞),
we need only consider Pr(y∗ = −∞) in the following two cases,
where we suppose there are L samples equal to −∞:
(I) xc = −∞,r̃c = L+1

2
, where L ∈ [1, N ], then

Pr(y∗ = −∞|xc = −∞)

= Pr(r̃c ≤ k, x(k) = −∞|xc = −∞)

+Pr(k < r̃c < N − k + 1|xc = −∞)

+Pr(r̃c ≥ N − k + 1, x(N−k+1) = −∞|xc = −∞)

= Pr(k ≤ L ≤ 2k − 1|xc = −∞)

+Pr(2k − 1 < L ≤ N |xc = −∞) + 0

= Pr(x(k) = −∞|xc = −∞).

(II) xc �= −∞, r̃c > L, where L ∈ [0, N − 1], then
Pr(y∗ = −∞)|xc �= −∞)

= Pr(r̃c ≤ k, x(k) = −∞|xc �= −∞)

+Pr(r̃c ≥ N − k + 1, x(N−k+1) = −∞|xc �= −∞)

= Pr(r̃c < k ≤ L|r̃c > L) + Pr(r̃c ≥ L ≥ N − k + 1|r̃c > L)

= 0 + Pr(L ≥ N − k + 1|r̃c > L)

= Pr(x(N−k+1) = −∞|xc �= −∞).

From (I) (II) we have Pr(y∗ = −∞) = Pr(y = −∞), so
Pr(y∗ = ±∞) = Pr(y = ±∞), which means F-LUM and
LUM smoother have the same break-down probability. �
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4.2. False-alarm Probability of F-LUM Smoother

The false-alarm probability is the probability of an uncorrupted
sample being modified by the filter. It is an indication of the detail
preservation capability of a filter. As we can see from the previous
example, r̃c tends to be near the median when xc is not an out-
lier, even though the crisp rank of xc may fall outside the range
[k, N −k+1]. Thus, the F-LUM smoothers can preserve the orig-
inal details better by avoiding the modification in the absence of
outliers. Hence, the F-LUM smoothers generally have lower false-
alarm probability than the LUM smoothers. For more insights, as-
sume the input samples are i.i.d. In the case where i samples equal
−∞ and j samples equal +∞, the crisp rank of the center sample
rc is uniformly distributed in [i + 1, N − j]. So the false-alarm
probability of the LUM smoother is

1 − ∑N−1
i=0

∑N−1−i
j=0 P (i, j)Q(i, j),

where Q(i, j) = max[0,min(N−k+1,N−j)−max(k,i+1)]
N−i−j

is the con-
ditional probability of rc being within [k, N − k + 1], P (i, j) is
the probability that i samples equal −∞ and j samples equal +∞.
Similarly, the false-alarm probability of the F-LUM smoother is

1 − ∑N−1
i=0

∑N−1−i
j=0 P (i, j)Q̃(i, j),

where Q̃(i, j) is the conditional probability that r̃c is within [k, N−
k + 1]. Note under each condition, r̃c =

∑N−j
k=i+1 kR̃c,(k)∑N−j
k=i+1 R̃c,(k)

can

be approximated by
∑N−j

k=i+1 kR̃c,k∑N−j
k=i+1 R̃c,k

in distribution. Moreover, the

αk = R̃c,k terms are identically distributed and αk ≈ 1 when the
spread parameter of the membership function is sufficiently large.
Thus we have

r̃c ≈
∑N−j

k=i+1 kαk

N−j−i
= N−j+i+1

2
E[αk] +

si,j

N−j−i
·

∑N−j
k=i+1 Yk

si,j
,

where Yk = k(αk−E[αk]), s2
i,j =

∑
k E[Y 2

k ]. By the Lindeberg-

Feller Central Limit Theorem [8], Wi,j =
∑N−j

k=i+1 Yk

si,j
tends to fol-

low the standard normal distribution N(0, 1). Since E[αk] ≈ 1,
the distribution of r̃c can be approximated by N(N−j+i+1

2
,

si,j

N−j−i
).

If the input samples are Gaussian distributed with variance ξ2 and
the Gaussian membership function with spread parameter σ is used,
it is not difficult to obtain V ar[αk] = σ√

4ξ2+σ2
− ( σ√

2ξ2+σ2
)2,

and express si,j in terms of V ar[αk]. Then, we can compute
Q̃(i, j) and obtain the approximated false-alarm probability of the
F-LUM smoother. The theoretical results of both LUM and F-
LUM smoothers for ξ = 10, σ = 25 and 2% impulsive noise are
shown in Fig. 3, which is consistent with our intuitive analysis.

4.3. Small Variation Preservation of the F-LUM Sharpener

Small variations of the image data often result from the fine details
of the image or from the low-level noise in a flat region. They usu-
ally manifest themselves as pulses with gentle slopes. Regardless
of the heights, these gentle slopes tend to be converted into ideal
steps by the LUM sharpeners [7]. Thus, the LUM sharpener may
severely alter the original structure of the image by distorting the
fine details or introducing noisy patches in flat regions.

By introducing the new parameter h, F-LUM sharpeners pre-
serve the input when r̃c ∈ [h, N − h + 1]. Note that r̃c is close
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Fig. 2. Breakdown probability of LUM and F-LUM smoothers
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Fig. 3. False-alarm probability of LUM and F-LUM smoothers
applied on image House and Gaussian input with distribution
N(128, 10).

to the median, and thus very likely to be within [h, N − h + 1],
as long as the samples’ diversity is small. Therefore, the F-LUM
sharpeners can preserve the small variations presented in the signal
and avoid the undesired enhancement mentioned above, while still
perform desirable enhancing along the key edges. Using the crisp
rank in the same framework, however, cannot achieve the same
goal since the crisp ranks are independent of the sample diversity.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the LUM and F-LUM smoothers
(sharpeners), we perform experiments on real images. The test
images’ sizes are 256 × 256, the filtering window size is 5 × 5
and a Gaussian membership function is used. To compare the
performance of LUM and F-LUM smoothers, we apply them on
the image House corrupted by different levels of impulsive noise.
For each value of k, the spread parameter σ is optimized 2 to
yield the minimal mean absolute error (MAE). The experimen-
tal breakdown and false-alarm probabilities of each filter are plot-
ted in Fig. 2 and 3, respectively. As can be seen, for the same

2The parameter σ can be optimized using a simple stochastic gradient
approach on a training image such as Lenna, due to the space constrains,
we do not present the details in this paper.

II - 895

➡ ➡



(a) (b)

Fig. 4. Output and error image of the (a) LUM and (b) F-LUM
smoother applied on House image corrupted by 5% impulsive
noise, where σ = 70, k is optimized for both filters to yield min-
imal MAE. The F-LUM smoother performs better in both noise
removal and detail preservation.

k, F-LUM smoother has the same breakdown probability as the
LUM smoother, while achieving much lower false-alarm proba-
bility. The experimental false-alarm probabilities of the F-LUM
smoothers (σ = 25) applied on Gaussian input (ξ = 10) corrupted
by 2% impulsive noise are also shown in Fig. 3, where the theoret-
ical results approximate the experimental data well especially for
k small. Thus, by choosing appropriate k and σ, F-LUM smoother
can excel in both noise removal and detail preservation. Figure 4
shows such an example.

To compare the performance of the LUM and F-LUM sharp-
ener, we test the Mandrill and the Lenna images ( Lenna is cor-
rupted by zero-mean Gaussian noise with variance 25). The re-
sults are shown in Fig. 5. We can see that the LUM sharpener
distorts the fine textures of the Mandrill’s fur around the face and
below the nose; while the F-LUM sharpener enhances the image
contrast and preserves the details well. For the Lenna image, the
LUM sharpener introduces many noisy patches on Lenna’s face;
while F-LUM sharpener preserves the smoothness of the face and
enhances the edges of the hat and the feathers.

6. CONCLUSION

The F-LUM filters, by utilizing the fuzzy ranks, achieve better de-
tail (or smoothness) preservation than standard LUM filters in both
smoothing and sharpening process without sacrificing their noise
removal and contrast enhancement capability. The spread param-
eter of the membership function and the new filter parameter h
provide more flexibility in filter design while retaining the filter’s
simplicity. Our current research include evaluating the the gen-
eral F-LUM filters in joint smoothing and sharpening process. We
believe they should have good performance in all the aspects of
outlier rejection, edge enhancement and structure preservation.
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