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ABSTRACT

In this paper, we show that the optimization needed to solve

the Least Absolute Deviations (LAD) regression problem

can be viewed as a sequence of Maximum Likelihood es-

timates (MLE) of location. The derived algorithm reduces

to an iterative procedure where a simple coordinate trans-

formation is applied during each iteration to direct the opti-

mization procedure along edge lines of the cost surface, fol-

lowed by a MLE estimate of location which is executed by

a weighted median operation. Requiring weighted medians

only, the new algorithm can be easily modularized for hard-

ware implementation, as opposed to most of the other ex-

isting LAD methods which require complicated operations

such as matrix entry manipulations. The new algorithm pro-

vides a better trade-off solution between convergence speed

and implementation complexity compared to existing algo-

rithms.

1. INTRODUCTION

Linear regression has long been dominated by Least Squares

(LS) techniques, mostly due to their elegant theoretical foun-

dation and ease of implementation. The assumption in this

method is that the model has normally distributed errors. In

many applications, however, heavier-than-Gaussian tailed

distributions may be encountered, where outliers in the mea-

surements may easily ruin the estimates [1]. To address this

problem, robust regression methods have been developed

so as to mitigate the influence of outliers. Among all the

approaches to robust regression, the Least Absolute Devi-

ations (LAD) method, or L1-norm, is considered concep-

tually the simplest one since it does not require a “tuning”

mechanism like most of other robust regression procedures.

As a result, LAD regression has drawn significant attentions

in statistics, finance, engineering, and other applied sciences

as detailed in devoted studies on L1-norm methods [1, 2].
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LAD regression is based on the assumption that the model

has Laplacian distributed errors. Unlike the LS approach

though, LAD regression has no closed form solution, hence

numerical and iterative algorithms must be resorted to.

The simple LAD regression problem is formulated as

follows. Consider N observation pairs (Xi, Yi) modelled in

a linear fashion

Yi = aXi + b + Ui, i = 1, 2, · · · , N (1)

where a is the unknown slope of the fitting line, b the inter-

cept, and Ui are unobservable errors drawn from a random

variable U obeying a zero mean Laplacian distribution. The

Least Absolute Deviation regression is found by choosing

a pair of parameters a and b that minimizes the objective

function

F (a, b) =
N∑

i=1

|Yi − aXi − b|, (2)

which has long been known to be continuous and convex

[1]. Moreover, the cost surface is of a polyhedron shape, and

its edge lines are characterized by the sample pairs (Xi, Yi).
In this paper, we derive a fast iterative solution to the

LAD regression problem where the concept of Maximum

Likelihood is applied jointly with coordinate transforma-

tions. It is also shown that the proposed method is com-

parable with the best algorithms used to-date in terms of

computational complexity, and has a greater potential to be

implemented in hardware.

2. BASIC UNDERSTANDING

Consider the linear regression model in (1). If the value of a
is fixed, say a = a0, the objective function (2) now becomes

a one-parameter function of b

F (b) =
N∑

i=1

|Yi − a0Xi − b|. (3)

Assuming a Laplace distribution for the errors Ui, the above

cost function greatly resembles a Maximum Likelihood lo-

cation estimator for b. Thus, the parameter b∗ in this case
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Fig. 1. Illustration of the sample space and the parameter space in the simple linear regression problem. The circles in the

left plot represent the samples, the dot in the right plot represents the global minimum.

can be obtained by

b∗ = MED(Yi − a0Xi | N
i=1) (4)

where MED(·) stands for the well-known median opera-

tion. If, on the other hand, we fix b = b0, the objective

function reduces to

F (a) =
N∑

i=1

|Yi − b0 − aXi|

=
N∑

i=1

|Xi|
∣∣∣∣Yi − b0

Xi
− a

∣∣∣∣ . (5)

Again, if the error random variable Ui obeys a Laplacian

distribution, the observed samples {Yi−b0
Xi

} are also Lapla-

cian distributed, but with the difference that each sample in

this set has different variance. Thus the parameter a∗ min-

imizing the cost function (5) can still be seen as the ML

estimator of location for a, and can be calculated out as the

weighted median,

a∗ = MED

(
|Xi| � Yi − b0

Xi

∣∣∣∣
N

i=1

)
, (6)

where � is the replication operator. For a positive integer

|Xi|, |Xi| � Yi means Yi is replicated |Xi| times. When

the weights |Xi| are not integers, the computation of the

weighted median is outlined in [3].

A simple and intuitive way of solving the LAD regres-

sion problem can be constructed as a “seesaw” procedure:

first, hold one of the parameters a or b constant, optimize

the other using the MLE concept; then alternate the role of

the parameters, and repeat this process until both parameters

converge. However, careful inspection reveals that there are

cases where the algorithm does not reach the global mini-

mum. To see this, it is important to describe the relationship

between the sample space and the parameter space.

As shown in Fig. 1, the two spaces are dual to each

other. In the sample space, each sample pair (Xi, Yi) rep-

resents a point on the plane. The solution to the problem

(1), namely (a∗, b∗), is represented as a line with slope a∗

and intercept b∗. If this line goes through some sample pair

(Xi, Yi), then the equation Yi = a∗Xi + b∗ is satisfied. On

the other hand, in the parameter space, (a∗, b∗) is a point on

the plane, and (−Xi, Yi) represents a line with slope (−Xi)
and intercept Yi. When b∗ = (−Xi)a∗ + Yi holds, it can

be inferred that the point (a∗, b∗) is on the line defined by

(−Xi, Yi).
The structure of the objective function F (a, b) is well

defined as a polyhedron sitting on top of the a-b plane. The

projections of the polyhedron edges onto the plane are ex-

actly the lines defined by sample pairs (Xi, Yi), which is

why the term “edge line” is used. Moreover, the projec-

tions of the polyhedron corners are those locations on the

a-b plane where two or more of the edge lines intersect.

Most importantly, the minimum of this convex, linearly-

segmented error surface occurs at one of these corners.

The geometrical interpretation of operation (4) can be

derived as follows: draw a vertical line at a = a0 in the

parameter space, mark all the intersections of this line with

N edge lines1. The intersection on the edge line defined

by (−Xj) and Yj is vertically the median of all, thus its

b-coordinate value is accepted as b∗, the new update for b.

Similar interpretation can be made for (6), except that the

chosen intersection is a weighted median output, and there

may be some edge lines parallel to the a-axis.

The drawback of this intuitive algorithm is that the con-

vergence dynamics largely depends on the geometry of the

cost surface. For example, if the very bottom of the cost

function is a trench, then the optimization route will be bounced

back and forth between two edges of this trench; corre-

spondingly on the parameter plane, the convergence follows

1Since all meaningful samples are finite, no edge lines will be parallel

to the b-axis, hence there must be N intersections.
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Fig. 2. Illustration of one iteration. The previous estimate (ak−1, bk−1) is mapped into the transformed coordinates as

(a′
k−1, b

′
k−1); (a′

k, b′k) is obtained through ML estimation in the transformed coordinates; The new estimate (ak, bk) is formed

by mapping (a′
k, b′k) back into the original coordinates. The sample set is [(1.6, 2.8), (−1.4,−3.8), (1.2, 3.5), (−4.3,−4.7),

(−1.8,−2.2)].

a fairly inefficient zigzag manner. If the bottom of the cost

function is a notch, then whenever the optimization gets on

any part of that notch, it will stuck there, since the horizon-

tal and vertical optimization will not bring it to the global

minimum any further.

3. NEW ALGORITHM

To overcome these limitations, the iterative algorithm must

be modified exploiting the fact that the optimal solution is

at an intersection of edge lines. Thus, if the search is di-

rected along the edge lines, then a more accurate and more

efficient algorithm can be formulated. The approach pro-

posed in this paper, is through coordinates transformation.

The basic idea is as follows. In the parameter space, if the

coordinates are transformed so that the edge line containing

the previous estimate (ak−1, bk−1) is parallel to the a′-axis

at height b′k−1, then the horizontal optimization based upon

b′k−1 is essentially an optimization along this edge line. The

resultant (a′
k, b′k) will be one of the intersections that this

line has with all other edge lines, thus avoiding possible

zigzag dynamics during the iterations. Transforming the ob-

tained parameter pair back to the original coordinates results

in (ak, bk). This is illustrated in Fig. 2.

The following is the proposed algorithm for LAD re-

gression.

1) Set k = 0. Initialize b to be b0 using the LS solution

b0 =
∑N

i=1(Xi − X̄)(Ȳ Xi − X̄Yi)∑N
i=1(Xi − X̄)2

. (7)

Calculate a0 by a weighted median

a0 = MED

(
|Xi| � Yi − b0

Xi

∣∣∣∣
N

i=1

)
. (8)

Keep the index j which satisfies a0 = Yj−b0
Xj

. In

the parameter space, (a0, b0) is on the edge line with

slope (−Xj) and intercept Yj .

2) Set k = k + 1. In the sample space, right shift the

coordinates by Xj , so that the newly formed y′-axis

goes through the original (Xj , Yj). The transforma-

tions in the sample space are

X ′
i = Xi − Xj , Y ′

i = Yi, (9)

and the transformations in the parameter space

a′
k−1 = ak−1 , b′k = b′k−1 = bk−1 + ak−1Xj .

(10)

The shifted sample space (X ′, Y ′) corresponds to a

new parameter space (a′, b′), where (−X ′
j , Y

′
j ) rep-

resents a horizontal line.

3) Perform a weighted median to get a new estimate of

a′

a′
k = MED

(
|X ′

i| �
Y ′

i − b′k
X ′

i

∣∣∣∣
N

i=1

)
. (11)

Keep the new index t which gives a′
k = Y ′

t −b′k
X′

t
.

4) Transform back to the original coordinates

ak = a′
k , bk = b′k − a′

kXj (12)

5) Set j = t. If ak is identical to ak−1 within the tol-

erance, end the program. Otherwise, go back to step

2).

It is simple to verify that the transformed cost function is

the same as the original one using the relations in (9) and

(10). This relationship guarantees that the new update in

each iteration is correct.

II - 891

➡ ➡



1 1.25 1.5
0.2

0.45

0.7

a

b
Initial

Wes’
LA’s
Edgelines

Fig. 3. Comparison on Wesolowsky’s and Li and Arce’s al-

gorithms: the convergence of the algorithms on the param-

eter space. Two algorithms choose the same LS solution

as the initial point. The marked dot represents the global

minimum. Notice that not all the edgelines are plotted.

4. SIMULATION

Two criteria are often used to compare LAD algorithms:

speed of convergence and complexity. Most of the effi-

cient algorithms, in terms of convergence speed (except for

Wesolowsky’s and its variations), are derived from Linear

Programming (LP) perspectives, such as simplex and inte-

rior point. In general, BR-like algorithms [2] are slightly

faster than other algorithms with simpler structures. Their

computational complexity, however, is significantly higher.

The complicated variable definition and logical branches

used in BR-like algorithms cause tremendous efforts in their

hardware implementations and are thus less attractive in such

cases. Focusing on efficient algorithms that have a simple

structure for ease of implementation, Wesolowsky’ direct

descent algorithm stands out [4].
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Fig. 4. Comparison on the average number of iterations of

Wesolowsky’s and LA algorithms. The dimensions of the

sample sets are chosen as [20, 50, 200, 1000, 5000], each

having 1000 averaging runs.

The major difference between Wesolowsky’s algorithm

and ours is that the weighted median operations in their

case are used for intercept b updates while in our algorithm

they are used for slope a updates. Also as depicted in Fig.

3, the first iterations of the two algorithms are different.

LA algorithm picks the first a update horizontally, whereas

Wesolowsky’s algorithm chooses a nearby intersection based

on a minimization operation. Since the realization of the

weighted median in both algorithms can benefit from the

partial sorting scheme stated above, to compare them, we

only need to count the iteration times. Also notice that

in the initialization of Wesolowsky’s algorithm, there is a

minimum-finding procedure, which can be considered a sort-

ing operation thus treated as having the same order of com-

plexity as a weighted median, even though they may be

implemented with totally different structures. For this rea-

son, this step in Wesolowsky’s algorithm will be counted

as one iteration. Fig 4 depicts the comparison of the newly

proposed algorithm and Wesolowsky’s direct descent algo-

rithm, in terms of number of iteration.

It can be observed from Fig. 4 that, for large sample

sets, the newly proposed LAD regression method needs 5%

less iterations, and about 15% less for small sample sets.

5. CONCLUSIONS

A new iterative algorithm for Least Absolute Deviation re-

gression is developed based on Maximum Likelihood Esti-

mates of location. A simple coordinate transformation tech-

nique is used so that the optimization within each iteration

is carried out by a weighted median operation, thus the pro-

posed algorithm is well suited for hardware implementation.

Simulation shows that the new algorithm is comparable in

computational complexity with the best algorithms avail-

able to date.

6. REFERENCES

[1] P. Bloomfield and W. L. Steiger, Least Absolute Devia-
tions: Theory, Applications, and Algorithms. Boston:

Birkhauser, 1983.

[2] Y. Dodge, Ed., Statistical Data Analysis: Based on the
L1-Norm and Related Methods. The Netherlands:

Elsevier Science, 1987.

[3] G. R. Arce, “A general weighted median filter struc-

ture admitting negative weights,” IEEE Transactions
on Signal Processing, vol. 46, pp. 3195–3205, Dec.

1998.

[4] G. O. Wesolowsky, “A new descent algorithm for the

least absolute value regression,” Commun. Statist., vol.

B10, no. 5, pp. 479 – 491, 1981.

II - 892

➡ ➠


