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ABSTRACT

The work addresses the problem of approximating the sam-
pled input-output (i/o) behavior of continuous-time nonlin-
ear systems using discrete-time Volterra models. For an ex-
actly band-limited nonlinear system for which a Volterra
representation exists, the discrete-time Volterra model ex-
actly corresponds to the sampled continuous-time Volterra
kernels. Physical systems, as they are causal, are never ex-
actly band-limited. Thus, a modeling error is introduced.
By relaxing the causality condition and allowing a small
processing delay, it is shown through simulation that more
accurate discrete-time Volterra models compared to sam-
pled continuous-time Volterra models can be generated.

1. INTRODUCTION

The subject of this work is to model the sampled i/o charac-
teristics of continuous-time nonlinear systems. The model
should be valid for nonlinear systems which have fading
memory [1] and therefore can be represented by Volterra
systems. A block diagram of the modeling setup is depicted
in Fig. 1, where V denotes the i/o operator of the nonlinear
system with y(t) = (Vu)(t), and Vd denotes the i/o operator
of the discrete-time approximation, with ȳ[n] = (Vdū)[n].
This situation could correspond to mixed signal circuit anal-
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ū[n]
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e[n]ȳ[n]−
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Fig. 1. Setup for the discussed identification problem;
continuous-time system V and discrete-time system Vd.

ysis and design, where a discrete-time model of an analog
circuit is generated to be implemented either in the digital
circuit part or in some digital circuit simulator. One ap-
plication would be a digital predistortion of an analog cir-
cuit. Two conditions, which are often met in these scenar-
ios, are that the sampling frequency of the digital part is
fixed through the circuit design and that analog circuits are
in general only weakly nonlinear systems. These conditions
imply that the sampling frequency cannot be chosen arbi-
trarily and that a Volterra series expansion is a feasible ap-
proach to model these systems. If the model is generated
by sampling the p-th order continuous-time Volterra kernels
hp(τ ), with τ ≡ [τ1, . . . , τp]T of the system V, at the pre-
determined sampling rate Fs, the model Vd will not be ac-
curate in general. That is because the frequency domain ker-
nels Hp(jΩ), with Ω ≡ [Ω1, . . . , Ωp]T , of V do not obey
Hp(jΩ) = 0, if any |Ωm| > πFs, m = 1, . . . , p, which is
required to achieve an exact model. For a physical system
V no such Fs can be found to yield an exact model because
system V is causal and thus cannot be strictly band-limited.

Subsequently, based on [2] a method that takes into
account the problem of not band-limited nonlinear systems
is presented and evaluated. The method yields non-causal
discrete-time models, thus for realtime applications the
induced processing delay δ has to be considered. That
method is referred to as ”non-causal system method” in
the following. The accuracy of the model is compared
with the standard method of sampling the kernels hp(τ )
of V with Fs = 1/Ts which is denoted as ”impulse in-
variance method” in analogy to the linear filter case. For
the nonlinear continuous-time reference system V different
single-input-single-output (SISO) bilinear systems of the
form

ẋ = Ax + Nxu + bu

y = cT x (1)
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are considered. The class of bilinear system is chosen be-
cause of their compact time and frequency Volterra repre-
sentation (cf. to (7) and (8),(9) below) as well as their ability
to model a broad class of nonlinear systems via the method
of Carleman linearization [3, p.105]. The performance mea-
sure taken for the comparison of the two methods is the
mean square error (MSE) εms between the sampled output
y(nTs) of the continuous-time system V and the output ȳ[n]
of the discrete-time approximation Vd.

εms =
1

maxn y(nTs)2Ns

Ns∑
n=1

(y(nTs) − ȳ[n])2, (2)

where the error is normalized by maxn y(nTs)2. The eval-
uation is done using a broadband discrete-multitone (DMT)
signal

u(t) =
Mc∑

m=1

Am sin(mΩ0t + ϕm) (3)

with Mc carriers and frequency spacing Ω0. A DMT sig-
nal is used because of its ability to persistently excite all
modes of the nonlinear system and because of its relevance
in ADSL data-transmission systems [4].

The work proceeds as follows. In section 2 the two
discrete-time approximation methods are introduced. The
section 3 discusses performance results of these methods by
applying them to the approximation of continuous-time bi-
linear systems, while section 4 draws conclusions and gives
an outlook.

2. DISCRETE-TIME MODELS

2.1. Impulse invariance method

The generalization of the impulse invariance method of lin-
ear filters [5, p.106] yields the discrete-time kernel hd

p[n] by
sampling the continuous-time Volterra kernel hp(τ )

hd
p[n] = (Ts)php(nTs) with n ≡ [n1, . . . , np]T . (4)

For not strictly band-limited kernel functions hp(τ ) the
sampling process (4) introduces aliasing effects and thus
the continuous-frequency domain kernel of the discrete-
time approximation (4)

Hd
p (jω) =

∞∑
n=−∞

hd
p[n]e−jωT n with ω ≡ [ω1, . . . , ωp]T

evaluated at ω = ΩTs do not coincide with the frequency
domain kernel Hp(jΩ) of the continuous-time system.
Where the notation is used, that a vector valued summation
index with p elements refers to a p fold summation.

2.2. Non-causal system method

The non-causal system method guarantees by its con-
struction that the continuous-frequency domain transforms
Hp(jΩ) and Hd

p (jω) of the continuous-time kernel and
the discrete-time kernels, respectively, coincide in the fre-
quency band of interest, i.e. [−Ωs/2, Ωs/2]p and [−π, π]p,
respectively. This is realized through a multiplication of
Hp(Ω) with a p-dimensional rectangular window function
Wp(jΩ) = W (jΩ1) · · ·W (jΩp)

W (jΩ) =
{

1 if |Ω| < πFs

0 otherwise,

with the time-domain representation

w(τ) = Fs
sin(πFsτ)

πFsτ
= Fssinc(πFsτ)

The multiplication yields,

H̃p(jΩ) = Hp(jΩ)Wp(jΩ)

Thus, the discrete-time kernels of the non-causal system
method are the samples of

h̃p(nTs) =
∫

Rp

w(τ1) · · ·w(τp)hp(nTs − τ )dτ , (5)

that is
h̃d

p[n] = (Ts)ph̃p(nTs). (6)

An approximation hdc
p [n] to (6), which can be implemented

efficiently, is that H̃p(jΩ) is sampled

H̃dc
p [k] = H̃p(jΩs(−1/2+k/N)) with k ≡ [k1, . . . , kp]T

and an inverse discrete Fourier transform of H̃dc
p [k],

hdc
p [n] =

N−1∑
k=0

H̃dc
p [k]ej(2π/N)kT n,

is performed. This approximation corresponds to replac-
ing the linear convolution of (5) by the circular convolution.
For kernel functions hdc

p [n] that decay rapidly to zero in the
sample interval [0, N − 1]p the aliasing due to the circu-
lar convolution can be negligible small. Finally, to gener-
ate a causal approximation to (1) the circular shift δ has
to be performed so that the new kernel indices are n′ =
(n − δ)mod N . An automatic determination of the size of
the required circular shift δ can be done by finding the min-
imum of the smoothed absolute values of the ”diagonal” el-
ements of the kernel hdc

p [n], i.e.

Sp[n] =
1

2M + 1

M∑
m=−M

|hdc
p [i(n − m)mod(N − 1)]|,
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Fig. 2. Illustration of the circular shift δ and its determi-
nation via Sp[n] (dashed) for a first order Volterra kernel;
inverse discrete Fourier transform hdc

1 [n] (square); shifted
version hdc

1 [n′] (triangle).

i.e., δ = arg minn(Sp[n]), with the p-element vector i ≡
[1, . . . , 1]T . The meaning of the circular shift δ and that of
Sp[n] is illustrated in Fig. 2. From the viewpoint of pro-
cessing delay the determined shift δ is not optimal. The
proposed scheme for generating a discrete-time equivalent
to a continuous-time Volterra system is summarized in the
block diagram of Fig. 3.

3. APPLICATION TO BILINEAR SYSTEMS

In the following the methods described in section 2 are ap-
plied to the approximation of bilinear systems (1). The com-
parison is done based on the MSE of (2) between the output
of respective discrete-time model and the sampled output
of the continuous-time reference system, i.e. system (1).
A DMT signal (3) comprising Mc = 128 carriers equally
spread over the entire bandwidth, i.e. [Ω0, Ωs/2 − Ω0] is
used for evaluation.

The time and frequency domain expressions for the ker-
nels of a bilinear system (1) can be found in [6, p.106]. For
the following simulation only the first and second order ker-
nels are used. The expressions in the time-domain read

h1(τ) = cT eAτb,

h2(τ1, τ2) = cT eAτ1NeA(τ2−τ1)b (7)

and in the frequency domain

H1(jΩ) = cT (jΩI− A)−1b, (8)

H2(jΩ1, jΩ2)

= cT (I(jΩ1 + jΩ2) − A)−1N(IjΩ1 − A)−1b. (9)

Hp(jΩ1, . . . , jΩp)
Compute continuous kernels

continuous-time nonlinear system
(state equation)

H̃dc
p [k1, . . . , kp]

Frequency domain sampling

hdc
p (n1, . . . , np)

Compute p-dim IFFT

Determine circular shift δ
hdc

p (n′
1, . . . , n

′
p)

disrete-time approximation
(Volterra)

Fig. 3. Block diagram of proposed procedure to compute
discrete-time Volterra approximation to a continuous-time
Volterra system.

3.1. Two-dimensional bilinear system

In the following, different bilinear systems of the form

A =
[−α1 −α2

1 0

]
with N =

[
0 N12

0 0

]
(10)

b = [1 0]T and c = [β1 β2]T ,

are generated. The Volterra kernels Hp(jΩ) of all systems
(10) possess low pass characteristics. They differ in their
attenuation at Ω = iΩs/2 and thus they represent stronger
or lesser band-limited nonlinear systems. The design of the
systems is performed as follows. In (10) A, b and c are
given in the controllable canonical form for linear systems,
in which αi and βi are the coefficients of the numerator and
the denominator polynomial for a linear system. The coef-
ficients of αi and βi are chosen in such a way that the linear
frequency response of (10) shows different cutoff frequen-
cies fc. A Chebychev type I low pass filter design is applied
to determine the coefficients of αi and βi for these cutoff
frequencies. To approximate the sampled i/o-characteristics
of (10) a second order Volterra system is considered. Ap-
plying (8) the different frequency responses H1(jΩ) are
shown in Fig. 4. Using (9) the effect on the second order
kernels H2(jΩ1, jΩ2) is given in Fig. 5, which shows only
its diagonal elements with Ω1 = Ω2. This graphical rep-
resentation was chosen because it gives a more quantitative
information than a two-dimensional plot which shows the
entire H2(jΩ1, jΩ2). Evaluating the performance of the
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Fig. 4. Absolute values of the frequency responses H1(jΩ)
of the linear subsystem of (10) for different cutoff frequen-
cies fc.
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Fig. 5. Absolute values of the second order frequency-
domain Volterra kernels H2(jΩ1, jΩ2) evaluated at Ω1 =
Ω2 for different cutoff frequencies fc of the linear subsys-
tem of (10).

discrete-time models generated by the methods in section
2 using (2), results in Fig. 6. It clearly shows that the pro-
posed method outperforms the method based on the impulse
invariance principle.

4. CONCLUSION

The scheme for generating discrete-time Volterra models of
continuous-time nonlinear systems in [2] is evaluated and
extended. The method shows superior performance than
the method which just samples the continuous-time Volterra
kernels, but introduces a processing delay. A trade-off be-
tween processing delay necessary to implement the derived
discrete-time model and the accuracy of the model could be,
to apply other windowing functions W (jΩ) that speeds up
the decrease of the non-causal part of the kernel functions
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Fig. 6. Mean square error εms of the impulse invariance
method (solid) and the non-causal system method (dashed)
for different cutoff frequencies fc of the linear subsystem of
the bilinear example (10).

(6).
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