
MODELING RESONANCES WITH PHASE MODULATED SELF-SIMILAR PROCESSES

Alexandros G. Dimakis

Dept. of EECS
University of California, Berkeley∗

adim@eecs.berkeley.edu

Petros Maragos

School of ECE
National Technical University of Athens

maragos@cs.ntua.gr

ABSTRACT
In this paper we propose a nonlinear model for time-varying

random resonances where the instantaneous phase (and frequency)

of a sinusoidal oscillation is allowed to vary proportionally to a

random process that belongs to the class of α-stable self-similar

stochastic processes. This is a general model that includes phase

modulations by fractional Brownian motion or fractional stable

Levy motion as special cases. We explore theoretically this ran-

dom modulation model and derive analytically its autocorrelation

and power spectrum. We also propose an algorithm to fit this

model to arbitrary resonances with random phase modulation. Fur-

ther, we apply the above ideas to some speech data and demon-

strate that the model is suitable for fricative sounds.

1. INTRODUCTION

Oscillations and resonances are phenomena of great importance in

physical systems. Their modeling and detection in signals emanat-

ing from such systems are significant problems in signal process-

ing and communications. Despite the mathematical tractability of

the linear models, the majority of significant problems in engineer-

ing and sciences involves nonstationary signals. Thus, real-world

oscillations may usually have a time-varying frequency, and this

time variation may be of a random nature. Examples include fre-

quency fluctuations in quartz crystals, atomic clocks, heart beat

variation and resonances in speech sounds. In all these phenom-

ena, it is the frequency and phase fluctuations that have been ob-

served to have long range correlations and 1/f spectra (evidence

of self-similarity). A related model is described in [4] where the

authors present an amplitude modulated self-similar process. For

relatively recent expositions on 1/f self-similar processes for appli-

cations in signal processing and communications see [1, 3, 15, 20]

and the references therein.

In this paper we advance two main ideas, which we explore

both theoretically and experimentally: First, we propose a random

phase modulation model for arbitrary oscillations where fluctua-

tions in their instantaneous frequency and phase are represented

by self-similar signals. Second, we apply this model to explore the

structure of resonances in turbulent speech sounds.

Our contributions in theory consist of using the class of self-
similar α-stable processes as stochastic representations of the ran-

dom instantaneous phase in our model and in deriving analytically

the autocorrelation and power spectrum of the modulated process.

This theoretical framework is quite general. For instance, popular

models such as the fractional stable Levy motion (FSLM) [18] and
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the fractional Brownian motion (FBM) [10] are special cases of

stable self-similar processes. From the algorithmic and experimen-

tal side, our contributions consist of developing an algorithm to

estimate the model parameters, applying it to real speech sounds,

and testing its validity. A summary of our results has also been

presented in [13] in the context of nonlinear speech modeling.

The thematic organization of the paper is as follows: In sec-

tion 2 we briefly summarize the main concepts and models needed

for the analysis in this paper. The random phase modulation model

is discussed in Section 3 where the autocorrelation and its power

spectrum are analytically derived. Parameter estimation and appli-

cation to turbulent speech sounds are discussed in Section 4

2. PRELIMINARIES

We begin with some definitions and basic properties of self-similar

real processes following mainly [5].

A stochastic process X(t), t ≥ 0, is called (strict-sense) self-
similar if there exists a parameter H > 0, called similarity expo-

nent, such that, for any scale r > 0, X(rt)
d
= rHX(t), where

d
=

denotes equality of all finite-dimensional distributions. For short,

this structure is denoted by H-ss. The above strict sense can be-

come a wide-sense self-similarity if we restrict it only to the mean

and correlation. Self-similarity often implies a 1/f spectrum [7];

i.e., an H-ss process has a (generalized) power spectrum of the

form Sx(ω) ∝ 1/|ω|γ for some spectral exponent γ = 2H + 1
for a wide range of frequencies.

A process X(t) is said to have stationary increments Ys(t) =
X(t+s)−X(t) if all finite-dimensional distributions of Ys(t) are

independent of t. Throughout this paper we will be interested in

stochastic processes which are self-similar with exponent H and

have stationary increments, denoted as H-sssi processes.

Mandelbrot and van Ness [10] proposed the most popular model

for self-similar processes, called fractional Brownian Motion (FBM).

FBM is the only Gaussian H-sssi process and can be obtained via

a stochastic fractional integration of the standard Brownian mo-

tion. The main disadvantage of FBM is that due to its Gaussianity

it fails to model impulsiveness. By impulsiveness, we are referring

to non-negligible probability of observing values extremely distant

from the mean. This feature can be captured by using α-stable dis-

tributions that exhibit “heavy tails” that decay much slower than

Gaussian distributions. Specifically, symmetric a-stable (SαS) dis-

tributions are defined by their characteristic function which has the

form

Φ(θ) = exp(−|sθ|α), 0 < α ≤ 2. (1)

where s is a scale parameter. Inverse Fourier transform yields the

corresponding probability density functions. For α = 2 we get the
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Gaussian, whereas α = 1 yields the Cauchy density. There exist

no closed-form expressions for the density function for α different

than 1 and 2. A real-valued stochastic process X(t) is said to be

SαS if any linear combination
∑

k akX(tk) has a SαS distribu-

tion.

A popular model for H-sssi SαS processes is the fractional
stable Levy motion (FSLM) [18], defined via stochastic fractional

integration of the Levy process. Note that the class of H-sssi SαS

processes is very general. It includes FBM, FLSM, and a number

of other processes used to model impulsiveness and long range

dependence as special cases. Applications of signal processing

with α-stable distributions can be found in [1, 3, 14, 15].

3. A MODEL FOR RANDOM RESONANCES

We assume the general phase modulation model1

X(t) = A(t) cos[φ(t)], φ(t) = ωct + P (t) + φ0

where ωc is the center frequency of the resonance. For the subse-

quent analysis we ignore the instantaneous amplitude and assume

it constant. Further, we model the nonlinear instant phase P (t) as

an H-sssi SαS process. This process PH(t) has a similarity ex-

ponent H > 0, stationary increments and an symmetric α-stable

distribution for each t. Thus we shall work with the random phase
modulation process

X(t) = A cos(ωct + λPH(t) + φ0) (2)

where the center frequency ωc > 0 is assumed a known con-

stant, λ > 0 is the modulation index, φ0 is the phase offset at

t = 0, and PH(t) is an H-sssi process. The power spectrum of

PH(t) is proportional to 1/|ω|γ , where γ = 2H + 1. Thus, we

are modeling the modulating signal P (t) as an H-sssi stochas-

tic process. The increments process and hence the instantaneous

frequency ωi(t) = ωc + λP ′
H(t) is a stationary process with a 1/f

spectrum whose spectral exponent is 2H−1. In this section we an-

alytically derive the autocorrelation function and power spectrum

of this phase modulated process and demonstrate a mathematical

relation linking these processes with a-stable processes. The prob-

lems of testing the validity of the proposed model as well as fitting

it to real data arise in the following sections.

3.1. Phase-Modulated H-sssi SαS Process

Lemma 1 If X(t), t ≥ 0, is self-similar process with similarity
exponent H > 0, then for a given t the r.v. X(t) has a character-
istic function ΦX(t)(θ, t) with the property:

ΦX(t)(θ, t) = ΦX(1)(t
Hθ, 1) (3)

Proof: X(rt)
d
= rHX(t), which implies X(t)

d
= tHX(1). There-

fore the characteristic function of the r.v. X(t) is ΦX(t) = E[ejθX(t)] =

E[ej(tHθ)X(1)] which yields the result.

We can now present the basic theorem which determines the

autocorrelation function of the phase modulated process.2

1This model was motivated by the experimental evidence in [11] for the
AM-FM structure of fricative sounds with random noise-like instantaneous
modulating signals representing the frequency fluctuations.

2Some elementary assumptions and implications of the theorem are in-
spired from a random frequency modulation model analyzed by Papoulis

[16] where the nonlinear instant phase P (t) was equal to
∫ t
0 F (τ)dτ and

the instant frequency F (t) was a strict-sense stationary process.

Theorem 1 Consider the random process X(t) of (2) where A,
ωc and λ are real constants, φ0 is a random variable uniformly
distributed3 over [0, 2π) and independent of PH(t), and PH(t) is
an α-stable H-sssi process with characteristic function at each t

ΦPH (t)(θ, t) = exp(−|s(t)θ|α), 0 < α ≤ 2. (4)

where s(t) is a positive scale parameter. Then:
(a) X(t) is a wide sense stationary process with zero mean.
(b) Its autocorrelation function is given by

Rxx(τ) =
1

2
cos(ωcτ) exp(−|s(1)λ|α|τ |αH) . (5)

Proof: We define the complex processes

W (t) = exp[jλPH(t)], Z(t) = W (t) exp[j(ωct + φ0)] (6)

Then, since X(t) = [Z(t) + Z∗(t)]/2, to check whether X(t) is

WSS it suffices to check the constancy of the mean of Z and the

stationarity of the autocorrelation of Z and of the cross-correlation

between Z and its conjugate Z∗. First, for the mean, E[Z(t)] =
ejωctE[W (t)]E[ejφ0 ] = 0. Second, for the correlations,

Rzz∗(t + τ, t) = E[w(t + τ)w(t)]E[e2jφ0 ] = 0 (7)

Rzz(t + τ, t) = ejωcτE[ejλ(PH(t+τ)−PH(t))] (8)

Since the increments of PH(t) are stationary, the autocorrelation

of Z(t) and W (t) can be written Rww(τ) = E[ejλPH(τ)] =
E[W (τ)] and Rzz(τ) = ejωcτRww(τ) = ejωcτE[W (τ)]. Hence,

X(t) is a zero-mean WSS process. Now note that E[W (t)] =

E[ejλPH (t)] = ΦPH (t)(λ, t) where ΦPH (t)(λ, t) is the time de-

pendent characteristic function (4) of the r.v. PH(t). Then, from

the above results, it follows that the autocorrelation of X(t) is

Rxx(τ) = 1
2
Re[Rzz(τ)] = 1

2
cos(ωcτ)ΦPH (t)(λ, τ) Further,

due to the self-similarity of PH(t), we use lemma (3) to obtain

ΦPH (t)(λ, t) = exp(−|s(1)λ|α|t|αH). Combining the last two

equations yields the desired formula (5).

The power spectrum can be found as the Fourier transform of

Rxx(τ). This spectrum has a closed formula only for the special

cases when αH = 1 or αH = 2, which correspond respectively

to Cauchy or Gaussian resonances centered around ±ωc. Next we

analyze these special cases when the phase is FBM.

3.2. Phase is FBM

For the special case when the nonlinear instant phase PH(t) is an

FBM with 0 < H < 1, at each t PH(t) is a Gaussian r.v. with vari-

ance Var[PH(t)] = σ2
H |t|2H , σ2

H = E[PH(1)2] and character-

istic function ΦPH(t)(θ, t) = exp(− 1
2
σ2

Hθ2|t|2H) Therefore, if

in the previous theorem we set α=2 and s(1) = σH/
√

2, we de-

termine the autocorrelation function of X(t). The power spectrum

SH(ω) of X(t) can be found as the Fourier transform of Rxx(τ).

However, there is no closed formula for arbitrary H . There are

only two special cases where the Fourier transform can be ana-

lytically derived. Specifically for H = 0.5 we obtain the fol-

lowing power spectrum: SH=0.5(ω) =
σ2

H√
2π

[ 1
λ4σ4

H
+4(ω−ωc)2

+
1

λ4σ4
H

+4(ω+ωc)2
] which is a sum of two Cauchy resonances cen-

tered at ωc and −ωc. For H = 1 (which is only a limit case for

3A more general assumption for φ0 (for which the theorem is valid) is
E[ejφ0 ] = E[ej2φ0 ] = 0.
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FBM) we obtain: SH=1(ω) = 1

2
√

λ2σ2
H

[exp(− (ω−ωc)2

2λ2σ2
H

)

+ exp(− (ω+ωc)2

2λ2σ2
H

)] which is a sum of two Gaussian resonances

centered at ωc and −ωc. In this case, the resonance spectrum has

the same form as the frequency response of a Gabor filter.

3.3. Relation with a-Stable Distributions

The characteristic function (1) of an α-stable process is of the

same power form4 as the autocorrelation function (5) we derived

for the phase-modulated process by replacing the α exponent of

the former with αH . This analogy leads to the following interest-

ing conclusion: The power spectrum of a phase-modulated H-sssi

α-stable process has an analytic form that is equivalent with the

probability density function of an αH-stable distribution centered

at the carrier frequency ωc. This result seems to establish an under-

lying relation between phase-modulated self-similar processes and

α-stable distributions which is interesting for further exploration.

A related result connecting power law shot noise with α-stable dis-

tributions can be found in [17].

It is well known that α-stable distributions are invariant to

convolution and constitute an attractor under consecutive convo-

lutions of other density functions. Drawing an analogy with our

results, the power spectrum of the processes we propose is also

invariant and attracting with respect to convolution of power spec-

tra, which is multiplication of the autocorrelation functions in the

time domain. This important result implies that the modulated

self-similar processes we proposed constitute attracting processes

with respect to multiplication of autocorrelations for independent

stochastic processes. This seems to be a mathematical link be-

tween the multiplicative models for turbulence developed by the

Russian school[8] and our proposed modulation model and is in-

teresting for further exploration.

4. PARAMETER ESTIMATION AND APPLICATION TO
SPEECH SOUNDS

Motivated by experimental evidence in [19, 11, 12] for the exis-

tence of important nonlinear aerodynamic phenomena in speech

sounds as well as by the theoretical background relating self-similar

stochastic processes with turbulence, we advance the conjecture

made in [11] that turbulent speech sounds accept a modulation

model with a random noise-like signal representing phase fluctu-

ations. To fit and estimate the proposed model we need to iso-

late speech resonances and estimate their instant phase modulation

which can be efficiently achieved by using the energy separation

algorithm (ESA) [11]. Therefore, the proposed algorithm consists

of following five steps:

(1) Isolate the resonance by bandpass filtering the speech signal.

(2) Use the ESA demodulation algorithm to estimate the AM and

FM signals, A(t) and F (t).

(3) Determine the instant phase modulation signal P (t) by inte-

grating the instant frequency: P̂ (t) = 2π
∫ t

0
(F (τ)−Fc)dτ, where

Fc is the short-time average of F (t).

(4) Estimate the α exponent that best models the instant phase

modulation signal as a realization of a SαS process.

(5) Estimate the γ (or equivalently, H) exponent that best models

the phase modulation signal ˆP (t) as a 1/f self-similar signal.

4The multiplication with the cosine function in (5) merely causes a shift
centering the resonance at ωc and −ωc.

The last two steps are unquestionably the most perplexed. To esti-

mate the α exponent we exploit the fact that the increments of the

instant phase (namely instant frequency) are stationary SαS ran-

dom variables with the same α. Therefore, we used the Koutrou-

velis [15, 9] regression on the sample characteristic function to

estimate the α parameter for the instant frequency process (other

methods can also be used however). For fricative speech phonemes

the estimated α values were roughly in the [1.6, 2] interval.

The problem of estimating the γ exponent has been approached

from a number of different angles utilizing time, frequency and

wavelet-domain approaches. See [3] for an excellent review. Af-

ter extensively testing several techniques, the method which per-

formed best in our experiments was the GPH local spectral estima-

tor [6]. The estimated γ exponents varied in the [2.6, 3] interval.

The estimation algorithm was tested by creating various artifi-

cial resonances. The reconstructed phase modulation signal ˆP (t)
was a good approximation of the original artificial P (t), the vari-

ances of the estimated exponents however, where significant and

more work is required to reach exact conclusions.

Our experiments indicate that the measured exponents are cor-

related with the nature of each phoneme. Namely, voiced fricatives

usually generated larger γ exponents than unvoiced. This is a ra-

tional thing to expect since unvoiced fricatives (like /f/ or /s/) seem

to be less smooth and phase fluctuations with larger γ exponents

indicate smoother paths. The α exponent measures the impulsive-

ness of the instant phase. We observed that the unvoiced fricatives

had smaller exponents which indicate longer trails and thus more

impulsive behavior. Note that the model is suitable for modeling

broad resonances that are well isolated in the spectrum. Exper-

iments on formants of smooth vowels (like /a/) indicate that the

phase modulation signals have exponentially decaying spectra thus

exhibiting no long range correlations or self-similarity.

Figure (1) demonstrates the application of the described algo-

rithm to a /z/ phoneme (from TIMIT database). Fig(1b) illustrates

the spectrum of the sound and the Gabor filter used to isolate the

resonance. Fig(1c) illustrates the instant frequency as estimated by

ESA algorithm while Fig(1d) is the instant phase modulation sig-

nal which is modeled as a self-similar process. Fig(1e) is the power

spectrum of the phase modulation and the estimated slope. Fig(1f)

illustrates the variance of the the wavelet detail coefficients. Fol-

lowing [20], if the wavelet detail coefficients have variances that

behave like Var(xm
n ) ∝ 2−γm as a function of scale m, then the

process is “nearly 1/f”. The power spectrum (1e) and the wavelet

variance (1f) approximate straight lines for a broad range of scales

and that constitutes evidence that the proposed model is suitable

for fricative sounds. We have also performed numerous other sim-

ilar experiments on real speech signals [13]. In all these experi-

ments we have found evidence that the phase modulation of speech

resonances for fricative phonemes exhibits self-similarity.

5. CONCLUSIONS AND DISCUSSION

In this paper we have proposed a random phase modulation model

for resonances where the instant phase modulation signal is an α-

stable self-similar process. We analytically derived the second or-

der statics and proved that the power spectrum has the same form

as an α-stable density. We further proposed an algorithm to esti-

mate its parameters, and some experimental evidence of validity

for fricative speech.

The work herein is a continuation of previous work [11, 12,

13] on modeling resonances with AM-FM signals and on model-
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Fig. 1. Experiment with /z/. a) Speech signal s(t). b) Power Spectrum of s(t) and Gabor filter. c) Instant Frequency. d) Phase modulation

P̂ (t). e) Power Spectrum of P̂ (t) and estimated slope. f) Variance of the wavelet coefficients.

ing turbulence in fricative and other speech sounds with random

fractal signals. Our on-going work in this area includes better

estimation algorithms as well as a statistical study relating esti-

mated exponents with types of sounds. Such relations can be used

in speech recognition applications. Relating our model with tur-

bulence and multifractals is another promising research direction.

Finally, we believe that our model can be used in the study of other

time-varying oscillating physical systems since self-similar fluctu-

ations in periodic phenomena seem to be ubiquitous in nature.
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