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Abstract – In this paper, we extend our previous studies on 

blind cubic nonlinear system identification from the 

second-order moment (SOM) domain into the third-order 

moment (TOM) domain. It will be shown that under the 

given sufficient conditions, more subsets of truncated 

sparse Volterra systems can be blindly identified using 

TOM instead of SOM. This is consistent with the fact that 

more statistical knowledge can be obtained in the third-

order statistics domain for blind system identification. 

Simulation results confirm the validity and usefulness of 

our proposed algorithm. 

1. INTRODUCTION 
Nonlinear system identification is a fundamental signal 

processing technique aimed at choosing an appropriate 

mathematical nonlinear model to match an unknown 

dynamic system in terms of its input and output. In the 

case where the input signal to the system to be handled is 

not directly available, the system identification has to be 

carried out based on the system output signal along with 

some statistical knowledge of the input signal, thus the 

name “blind”. There exist various nonlinear systems: 

classes of Volterra system, Wiener system, Hammerstein 

system and neural network-based system, etc. Among 

them the Volterra system model is the most popular 

representation in nonlinear signal processing, 

communication, fault diagnosis, and biomedical 

applications due to the linearity of the model output as a 

function of the system parameters, i.e., Volterra kernels 

[1]. Blind identification of Volterra systems is 

unquestionably a common but difficult problem since the 

number of kernels in a full-sized  Volterra system (i.e., all 

kernels are nonzero) is huge. This challenge motivated 

many researchers to search for closed-form solutions for 

blind identification of some specific truncated Volterra 

systems such as quadratic, cubic, or bilinear systems. In 

[2], blind identifiability of quadratic models in the second-

order cumulant (SOC) and third-order cumulant (TOC) 

domain was established in a closed form. The authors in 

[3] provided an explicit description between the TOC of 

the quadratic system output and the system kernels. In [4], 

particular bilinear systems were identified blindly in the 

fourth order cumulant domain. These results imply that for 

a full-sized quadratic or bilinear system, unique matrix 

inversion solution of blind identification does not exist 

because of the coupling of unknown kernels and the 

shortage of available statistical information. For some 

applications [5], there is a need for higher order sparse

Volterra filters (i.e., a Volterra system that has zero 

coefficients for specified kernels). Matrix inversion 

solution for some subclass of sparse Volterra systems may 

be possible. In [6], the authors proposed a blind 

identification algorithm in SOM domain for sparse 

Volterra systems such as 
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�= .  In this paper, we propose a TOM 

based approach to blind identification of more complex 

but still sparse Volterra systems. The organization of the 

paper is as follows. In Section 2, we briefly present the 

blind identification problem for cubic systems in the TOM 

domain. The sufficient conditions for blind identifiability 

are derived and discussed in Section 3. Simulations are 

provided in Section 4 to verify the performance of the 

proposed identification algorithms and finally, a 

conclusion is drawn in Section 5. 

2. PROBLEM FORMULATION 
Consider the following cubic systems [7] 
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where {y(t)} is the output of the system, )}({ ty
o

 is the 

output measurement contaminated by an additive white 

Gaussian noise )}({ tn
w

 which is independent of {y(t)}. 

{x(t)} is an unobservable zero-mean i.i.d. signal with any 

distribution whose nonzero statistics 0)]([= ≠⋅ txE
x

β
βγ ,

are known up to β =9. Note that n is the memory length. 

The cubic kernels are then defined as )(
1

kh , ),(
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kkh  and 
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,...,2,1
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),,,( � , l=1, 2, 3, indicating bounded 

input-output, causality and stability. After some 

straightforward derivation, the TOM of )}({ ty
o

 is given 

by 
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which suggests that under some conditions, the TOM of 

noisy output observation )}({ ty
o

 is insensitive to the 

Gaussian noise. Here E{.} denotes an expectation 

operation and
21

,ττ  refers to time lags of the sequence. In 

this paper, we will consider sparse third-order Volterra 

systems where only some of the coefficients )(
1

kh ,

),(
21

kkh  and ),,(
321

kkkh  of system in Equ. (1) are 

nonzero. Our goal is to determine these coefficients based 

only on knowledge of ),(
21

0

3
ττym  in Equ. (2). 

3. BLIND IDENTIFIABILITY OF CUBIC SYSTEMS 
IN TOM DOMAIN 

After removing all redundant entries in Equ. (1) such as 

h(0,1)x(t)x(t-1) and h(1,0)x(t-1)x(t), or h(0,1,2)x(t)x(t-

1)x(t-2), h(0,2,1)x(t)x(t-2)x(t-1), h(1,0,2)x(t-1)x(t)x(t-2), 

h(1,2,0)x(t-1)x(t-2)x(t), h(2,0,1)x(t-2)x(t)x(t-1), and 
h(2,1,0)x(t-2)x(t-1)x(t), …, the system in Equ. (1) is 

described as 
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The vectors )(
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and each term in the RHS is set to zero if it is evaluated as 

negative. For instance, if n=1, p=3, then ,3,2
21

== qq

and 4
3

=q . Substituting Equ. (3) into Equ. (2) and 

expanding ),(
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0
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where ⊗  is the Kronecker product. Clearly if the terms 

with 0
21
==ττ  and 

21
ττ = are removed from 

oy
M

3
 and 

x
M

3
,

yoy
MM

33
=  and ∆ =0. In other words, the effect of 

Gaussian noise has been eliminated.  

On the other hand, the kronecker product in Equ. (8c) has 

also introduced redundant entries that must be eliminated 

before solving Equ. (7) for H. Indeed, one can see that 
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r

H  as the kernel vector obtained from H by 

removing the above redundancies and 
x
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corresponding 
x
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To blindly identify the system of Equ. (1), we need to 

determine all unknown Volterra kernels in 
r

H  uniquely 

based on Equ. (9). The following theorem provides 

sufficient conditions of blind identifiability for cubic 

systems with finite memory. 

Theorem 1 The full-sized cubic system with memory 

length n in Equ. (1) is not blindly identifiable. However, 

systems with sparse kernels can be identified blindly if 

x
M

3
 is of full row rank and  

(i)
2

)13( −≤ nn
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r
 in a noise-free situation or 
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2
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r
 in a noisy situation. 
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trivial solution of 
r

H  in Equ. (9) is obtained by 
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As we will see, however, for full-sized cubic system in 

Equ. (1), the solution given by Equ. (12) does not exist. 

 Substituting y(t) of Equ. (1) into Equ. (2) leads to 
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Recall the assumption that ],[
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is quite clear that 
r

s  as given by Equ. (10) is 
rr

ls >>  and 

matrix 
x
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 is not of full row rank. It follows immediately 

from Equ. (2) that it is impossible to identify a full-sized

cubic system given by Equ. (1) blindly. However, this 

result also implies that blind identifiability is possible for a 

subclass of sparse Volterra models that meets the 

relationship of 
rr

ls ≤ . Since the time lag pairs of TOM 

include terms with 0
21
==ττ  and 

21
ττ = , the obtained 

kernel estimates are biased due to effect of the Gaussian 

noise in this case, namely, 
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blindly in a noisy environment. It should be noted that in 

SOM domain, the relevant matrix is always singular and a 

unique solution of 
r

Ĥ  cannot be achieved. 

On the other hand, after removing terms with 0
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of Gaussian noise has been completely suppressed. Thus, 
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x
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s ,

the above model can be blindly identified without any 

influence of Gaussian noise. Theorem 1 has thus been 

proven.�

4. SIMULATIONS 
Consider the following sparse cubic systems  
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where h(1)=1, h(2,2)=0.8, and h(3,3,3)=-0.4. According to 

Theorem 1, 2210 =<=
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x

M
3

)=
r

s

suggesting that the system can be identified blindly in 

TOM domain. However, as can be seen in [6], this is not 

the case in the SOM domain. Generally an i.i.d. 

exponentially distributed random sequence {x(t)} with 

zero mean is generated as the input signal. We assume the 

model output observations are corrupted by white 

Gaussian noise )}({ tn
w

, where signal-to-noise-ratio 
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= =10 dB. Expectation operations 

in Equ. (9) are approximated by their estimation. The 

asymptotically unbiased estimates of ),(
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where the output data with ΩN  length are segmented into 

K records of M samples each. These ΩN samples are 

divided into K (4 or 16) records, each containing M (256 

or 1024) samples. To verify the theoretical analysis, 50 

Monte Carlo runs are performed. The final results, kernel 

estimates )1(ĥ , )2,2(ĥ , )3,3,3(ĥ  as well as the 

corresponding standard deviations are summarized in 

Table 1. It is clear that the estimated sparse cubic kernels 

are very close to their true values even under a lower SNR 

environment.  

5. CONCLUSION 
In this paper, TOM based blind identification of cubic 

systems is considered. Although full-sized cubic kernels 

cannot be estimated based on the TOM of the system 

output, some classes of sparse systems are blindly 

identifiable if the number of nonzero kernels meets some 

conditions involving the memory length n. The 

contribution of the proposed approach is that a larger 

subset of sparse cubic systems can be identified blindly as 

compared to the SOM-based approach due to the fact that 

additional statistical knowledge is available. Simulation 

results verify the effectiveness of the proposed method for 

blind identification of sparse nonlinear cubic systems. 
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Table 1 True and estimates of cubic model  

with their means (standard deviations) under 50 Monte Carlo runs 

dB10=SNR

1024=ΩN  16384=ΩN

True h(1) 1 1 

TOM-based estimate )1(ĥ 1.0105 (0.1969) 1.0014 (0.0932) 

SOM-based estimate )1(ĥ  [5] N/A N/A 

True h(2,2) 0.8 0.8 

TOM-based estimate )2,2(ĥ 0.8171 (0.1884) 0.7969 (0.0854) 

SOM-based estimate )2,2(ĥ  [5] N/A N/A 

True h(3,3,3) -0.4 -0.4 

TOM-based estimate )3,3,3(ĥ -0.4022 (0.0411) -0.3999 (0.0246) 

SOM-based estimate )3,3,3(ĥ  [5] N/A N/A 
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