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Abstract — In this paper, we extend our previous studies on
blind cubic nonlinear system identification from the
second-order moment (SOM) domain into the third-order
moment (TOM) domain. It will be shown that under the
given sufficient conditions, more subsets of truncated
sparse Volterra systems can be blindly identified using
TOM instead of SOM. This is consistent with the fact that
more statistical knowledge can be obtained in the third-
order statistics domain for blind system identification.
Simulation results confirm the validity and usefulness of
our proposed algorithm.

1. INTRODUCTION
Nonlinear system identification is a fundamental signal
processing technique aimed at choosing an appropriate
mathematical nonlinear model to match an unknown
dynamic system in terms of its input and output. In the
case where the input signal to the system to be handled is
not directly available, the system identification has to be
carried out based on the system output signal along with
some statistical knowledge of the input signal, thus the
name “blind’. There exist various nonlinear systems:
classes of Volterra system, Wiener system, Hammerstein
system and neural network-based system, etc. Among
them the Volterra system model is the most popular
representation  in  nonlinear  signal  processing,
communication, fault diagnosis, and biomedical
applications due to the linearity of the model output as a
function of the system parameters, i.e., Volterra kernels
[1]. Blind identification of Volterra systems is
unquestionably a common but difficult problem since the
number of kernels in a full-sized Volterra system (i.e., all
kernels are nonzero) is huge. This challenge motivated
many researchers to search for closed-form solutions for
blind identification of some specific truncated Volterra
systems such as quadratic, cubic, or bilinear systems. In
[2], blind identifiability of quadratic models in the second-
order cumulant (SOC) and third-order cumulant (TOC)
domain was established in a closed form. The authors in
[3] provided an explicit description between the TOC of
the quadratic system output and the system kernels. In [4],
particular bilinear systems were identified blindly in the
fourth order cumulant domain. These results imply that for
a full-sized quadratic or bilinear system, unique matrix
inversion solution of blind identification does not exist
because of the coupling of unknown kernels and the
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shortage of available statistical information. For some
applications [5], there is a need for higher order sparse
Volterra filters (i.e., a Volterra system that has zero
coefficients for specified kernels). Matrix inversion
solution for some subclass of sparse Volterra systems may
be possible. In [6], the authors proposed a blind
identification algorithm in SOM domain for sparse
Volterra systems such as
y(8) = hlk,k)u’ (t—k)+hk,k,)u’(t—k,), where

k,k,=0,1,2,--,n.
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In this paper, we propose a TOM

based approach to blind identification of more complex
but still sparse Volterra systems. The organization of the
paper is as follows. In Section 2, we briefly present the
blind identification problem for cubic systems in the TOM
domain. The sufficient conditions for blind identifiability
are derived and discussed in Section 3. Simulations are
provided in Section 4 to verify the performance of the
proposed identification algorithms and finally, a
conclusion is drawn in Section 5.

2. PROBLEM FORMULATION
Consider the following cubic systems [7]

()= i ih(k],kz,u-,kl)x(t—kl)x(t—kz)mx(t—kl)

I=1 ky e kg =0
Y, () =y@)+n, (1)

(1
where {y(¢)} is the output of the system, {y, (¢)} is the
output measurement contaminated by an additive white
Gaussian noise {n,(#)} which is independent of {y(7)}.

{x(®)} is an unobservable zero-mean i.i.d. signal with any
distribution whose nonzero statistics y,, = E[x’(©)]#0,
are known up to S =9. Note that » is the memory length.
The cubic kernels are then defined as h(k,), h(k,,k,) and
h(k k. k), where k. k,,k, €[0,n] and
z (k. ke, k)| <o, =1, 2, 3, indicating bounded

K1k ok
input-output, causality and stability. After some
straightforward derivation, the TOM of {y, (¢)} is given

by
m;O(TlaTz):E{yo(t)yo(t"'rl)yo(t"'rz)}
=mj(7,,7,) if 7, 27 ,#0 2)
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which suggests that under some conditions, the TOM of
noisy output observation {y (¢#)} is insensitive to the
Gaussian noise. Here FE{.} denotes an expectation
operation and 7,,7, refers to time lags of the sequence. In
this paper, we will consider sparse third-order Volterra
systems where only some of the coefficients h(k,),
h(k,,k,) and h(k,k,,k,) of system in Equ. (1) are
nonzero. Our goal is to determine these coefficients based
only on knowledge of m.° (7,,7,) in Equ. (2).

3. BLIND IDENTIFIABILITY OF CUBIC SYSTEMS

IN TOM DOMAIN
After removing all redundant entries in Equ. (1) such as
h(0,D)x()x(-1) and A(1,0)x(z-1)x(?), or Ah(0,1,2)x(f)x(z-
Dx(#-2), 7(0,2,1)x(O)x(-2)x(2-1), 5h(1,0,2)x(z-1)x($)x(z-2),
h(1,2,0)x(z-1)x(2-2)x(?), 7(2,0,1)x(2-2)x(f)x(z-1), and
h(2,1,0)x(2-2)x(t-1)x(¢), ..., the system in Equ. (1) is
described as

3
V(O =SHX,(0)+n,() 3)
The vectors X (f)and H,, X ,(H)and H , and X ,(?)
and H, have the dimension of g, X1, ¢,x1 and ¢, X1

12

respectively, given by

X, (@O =[x@x(t-)x(t-2)- x(t—n)]" (4a)
X, (0)=[x*(¢) x(O)x(t—1) --- x(£)x(t —n)
x'(t=1) - x(t =Dx(t —n)---x*(t —n)]"
(4b)
X, ,@O=[x@) x*@Ox(@-1) - x(0)x*(t —n) o
xX(t-1) x*@¢-Dx@-2)---x’(t—n)]"
and
H,, =[h(0) h(1) h(2)--- h(n)]" (5a)
H , =[h(0,0) A(0,1) --- h(0,n) (5b)
h(LL) --- h(1,n)--- h(n,n)]"
H . =[h(0,0,0) #(0,0,1) --- 4(0,n,n) (50
(LY - h(L1,n) - h(n,n,n)]"
where
q,=n+l
g, =(n+1)(n+2)/2 ©

4, =4, {4, —q,} +{g, ~[(n+ D +n]}
++{q, - [(n+D)+n+---+2]}
and each term in the RHS is set to zero if it is evaluated as
negative. For instance, if n=1, p=3, then g, =2,¢q, =3,
and g, =4. Substituting Equ. (3) into Equ. (2) and
expanding m;°(7,,r,) over the region of 7, €[/,l,] and
T,ell,l],1,1,,l,,], 20 leads to

IT -

M -H=M, —A ()

where
M}x = [M;(ZHZ})T 3M3X(lpl3 +1)T7 Y M;(ZI,A)T,

8
”'7M3X(lzﬂl4)r]r ( a)

M;(f]’z-z)=[E{Xr](t)®Xrl(t_Tl)®Xr](t_1.2)}’.“’
E{Xyl(t)®X,-1(t_Tl)®Xy3(t_Tz)}""z
E{X,-z(t)®X,-3(t_Tl)®X,-3(t_Tz)}]T

(8b)
H=[H ®H ®H, ,--H ®H ®H -, (50
C
H,®H ®H.]
M3yo =[m3y0 (llv:lz)’mior(ll:lz +1)a"':m3y0 (11314)7 (8d)
___’m;'u (12314)]
A=m)[my" () +my (L) +my (=1,
(8e)

cemy (L) +my () +my (1, = 1))
where ® is the Kronecker product. Clearly if the terms
with 7, =r,=0 and 7, =7,are removed from M, and
M, , M, =M, and A=0.In other words, the effect of
Gaussian noise has been eliminated.
On the other hand, the kronecker product in Equ. (8c) has
also introduced redundant entries that must be eliminated
before solving Equ. (7) for H. Indeed, one can see that
H,®H ®H =H ®H ®H =H ®H ®H, for i
j=1,2,3and i#j;
H,®H , ®H,=H ®H ®H =H ®H ®H,k =
H, ®H,®H, =H,®H ®H =H,6®H ®H, fori,
j,k=1,2,3and i# j#k.Also,in H, ®H ®H
h(a]’azs"'sai)h(ﬂlrﬂzr'"rﬂi)h(llalzr'”!z,') =
h(alaazn"':a/)h(llzlza”'aZi)h(ﬂlaﬂzz"’nﬂ/):

h(ﬂl’ﬂZ’...’ﬂi)h(al’aZ’...’ai)h(ll’lz’.“’Zi) =
h(ﬁlﬂﬁz""7ﬂ/)h(llﬂlzﬂ'"31")]7(0{130{2"”70“') =
h(ll’ZZ’...’Zi)h(al’aZ’.“’ai)h(ﬂ]’ﬂz’.“’ﬂi) =

h(llalza"’zl/)h(ﬂl:ﬂzn"'aﬂi)h(alaaza'"zai) P
fori=1,2,3and o, ,f,x. =01,---,n.
Define H, as the kernel vector obtained from H by
removing the above redundancies and M, as the

corresponding M, . An equivalent form for Equ. (7) is

M -H =M, -A ©9)
where the dimension of M, , H, and M ,, are
respectively s x(/, =/, +1)(/,-1,+1), s.,x1 and
(, =1, +1)(, -1, +1)x1. Here s, is given by

5= 3 4, (10)
sk
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where

qi(qi+l)(qi+2) vl:]:k
6
99,9, Vit j#k
G = , (11)
w =1 49:4,(q, +D Vi j=k
2
q.(q +1
q,qA(;J,+ ) Vi jtk

To blindly identify the system of Equ. (1), we need to
determine all unknown Volterra kernels in A, uniquely

based on Equ. (9). The following theorem provides
sufficient conditions of blind identifiability for cubic
systems with finite memory.

Theorem 1 The full-sized cubic system with memory
length 7 in Equ. (1) is not blindly identifiable. However,
systems with sparse kernels can be identified blindly if

M ,, 1s of full row rank and

. n(3n-1) . . o
(1) s, < % in a noise-free situation or
.. 3n° +5n+2 . o
(i) s, < f in a noisy situation.

Proof. If the matrix (M, -M!) is nonsingular, the non-
trivial solution of H, in Equ. (9) is obtained by
H, =M, -M)" M, (M, A7) (12)

As we will see, however, for full-sized cubic system in
Equ. (1), the solution given by Equ. (12) does not exist.
Substituting y(¢) of Equ. (1) into Equ. (2) leads to

3 n
y
m3 (T1 ’Tz) - Z Z
V2.3 =1 (il gy )=0
Gs25501)
(ki kg)

“h(k ke k) E{Lx(t = i)x(t=1,) - x( = 1,)]

'[x(t_j| _T|)x(t_j2 _Tl).‘.x(t_jvz _T|)]

'[X(t—kl _Tz)x(t_kz _Tz)"'x(t_kv3 _Tz)]}
(13)

Recall the assumption that 7, e€[/,/,] and 7,€[/,,l,],
l,1,,[,,1,20. For /,=0 and /,=n in Equ. (13), it
follows that m](n+d,7,)=m!(n,7,) for 6=1,2,---.

{h(il,iz,"',i“)'h(jl,jz,"',j‘,z)

With the symmetry of TOM m](7,,7,)=m;(7,,T,), we
l,=2n.
m} (7,,2n+0)=m. (7,,2n). Thus the dimension of the
3n’ +5n+2

2
is quite clear that s, as given by Equ. (10) is s, >>/ and

have [, =1, and Likewise,

It

matrix M, becomes s, x/ where /| =

matrix M, is not of full row rank. It follows immediately
from Equ. (2) that it is impossible to identify a full-sized

cubic system given by Equ. (1) blindly. However, this
result also implies that blind identifiability is possible for a
subclass of sparse Volterra models that meets the
relationship of s, </ . Since the time lag pairs of TOM
include terms with 7, =r,=0 and 7, =r,, the obtained

kernel estimates are biased due to effect of the Gaussian
noise in this case, namely,

H, =M, -M.)"-M, (M, —A) where A#0.

For example, consider the sparse cubic model

WO=hk)x(t—k,)+h(k,, k)x*(t—k) +h(k,,k,,k,)
-x*(t—k,), where k, 2k, 2k, [5], it is straightforward
3k, +5k, +2

P 2 .

k,>2 and rank( M, )=s,, the model can be identified

blindly in a noisy environment. It should be noted that in
SOM domain, the relevant matrix is always singular and a

to show that s =10, / So when

unique solution of A . cannot be achieved.

On the other hand, after removing terms with 7, =7,=0
n(3n-1)
-
In this case, H, =(M,, -M")"-M,, M, ;ie., the effect
of Gaussian noise has been completely suppressed. Thus,
k,(3k, -1)

2
the above model can be blindly identified without any

influence of Gaussian noise. Theorem 1 has thus been
proven.O

and 7, =7, from Equ. (13), / reduces to [/ =

if k,>3, ie., s <l'= and rank( M, )=s, ,

4. SIMULATIONS
Consider the following sparse cubic systems
y,()=x(t-1)+0.8x*(t—-2)-0.4x’(t=3)+n, () (14)
where A(1)=1, h(2,2)=0.8, and 4(3,3,3)=-0.4. According to
Theorem 1, s =10</ =22 and rank(M, )=s,

suggesting that the system can be identified blindly in
TOM domain. However, as can be seen in [6], this is not
the case in the SOM domain. Generally an i.i.d.
exponentially distributed random sequence {x(#)} with
zero mean is generated as the input signal. We assume the
model output observations are corrupted by white

Gaussian noise {n (f)}, where signal-to-noise-ratio
E(y*(t : .

SNRlelogmwﬂO dB. Expectation operations
E(n,(®)

in Equ. (9) are approximated by their estimation. The
asymptotically unbiased estimates of m.°(7,,7,) in (8d)
are obtained as [8]

1

m (7, 7,) = m
1772
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M-max(0,71,72)

Yot DY, G +T)Y,0, (I +7,)

i=1,2, .. M (15a)
M(t,7,)=[M -max(0,7,7,)]-max(0,—7,—7,) (15b)

i=l+max (0,~71,~)

1.,
mzo(Tsz):E;mi(k)(fvrz) (150)

where the output data with N, length are segmented into
K records of M samples each. These N, samples are

divided into K (4 or 16) records, each containing M (256
or 1024) samples. To verify the theoretical analysis, 50
Monte Carlo runs are performed. The final results, kernel

estimates l;(l), 5(2,2), 5(3,3,3) as well as the
corresponding standard deviations are summarized in
Table 1. It is clear that the estimated sparse cubic kernels

are very close to their true values even under a lower SNR
environment.

5. CONCLUSION
In this paper, TOM based blind identification of cubic
systems is considered. Although full-sized cubic kernels
cannot be estimated based on the TOM of the system
output, some classes of sparse systems are blindly
identifiable if the number of nonzero kernels meets some
conditions involving the memory length n. The
contribution of the proposed approach is that a larger
subset of sparse cubic systems can be identified blindly as
compared to the SOM-based approach due to the fact that
additional statistical knowledge is available. Simulation

results verify the effectiveness of the proposed method for
blind identification of sparse nonlinear cubic systems.
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Table 1 True and estimates of cubic model
with their means (standard deviations) under 50 Monte Carlo runs

SNR =10dB
N, =1024 N, =16384
True A(1) 1 1
TOM-based estimate /’Al(l) 1.0105 (0.1969) 1.0014 (0.0932)
SOM-based estimate /(1) [5] N/A N/A
True h(2,2) 0.8 0.8
TOM-based estimate ;;(2’2) 0.8171 (0.1884) 0.7969 (0.0854)
SOM.-based estimate /(2,2) [5] N/A N/A
True 4(3,3,3) .04 0.4
TOM-based estimate /(3,3,3) -0.4022 (0.0411) -0.3999 (0.0246)
SOM-based estimate /(3,3,3) [5] N/A N/A
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