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ABSTRACT

In this contribution we present a novel algorithm for the efficient
computation of the output of Volterra filters in diagonal coordinate
representation (DCR), while allowing for different memory length
for each kernel. This is achieved by extending partitioned block
filtering methods for fast convolution in the discrete Fourier trans-
form (DFT) domain to Volterra filters. It is shown that the DCR
is particularly favorable for modeling the cascade of a Volterra fil-
ter followed by a linear filter, as required for applications such as
nonlinear acoustic echo cancellation. To obtain a corresponding
adaptive structure of the proposed approach, we introduce a ge-
neralization of a known DFT-domain adaptive algorithm for linear
systems to Volterra filters.

1. INTRODUCTION

Volterra filters are known to be capable to model a large variety of
real world nonlinear systems and thus, there is a wide range of ap-
plications of adaptive Volterra filters [1]. In the following we will
refer to acoustic echo cancellation as a specific application. The
general set-up of the acoustic echo cancellation problem is shown
in Fig. 1. The acoustic echo canceler (AEC) seeks to minimize

AEC r(k)

n(k)

x(k)

d(k)e(k)
y(k)

Fig. 1. General set-up of the acoustic echo cancellation problem.

the power of the error signal e(n) by subtracting an estimate of
the echo signal y(n) from the microphone signal d(n). Standard
approaches for the cancellation of acoustic echos rely on the as-
sumption that the echo path to be identified can be modeled by
a linear filter. However, in some practical situations loudspeaker
systems introduce nonnegligible nonlinear distortions, e.g., caused
by low-cost loudspeakers driven at high volume. With this non-
linear distortion, the performance of a linear acoustic echo can-
celer degrades substantially and thereby, greatly impairs quality of
voice communication. Thus, nonlinear models have to be consid-
ered. A common approach to modeling the nonlinear behavior of
loudspeakers is given by second-order Volterra filters, where the

required memory length of the linear kernel is larger than that of
the quadratic kernel [2].

In this paper we first introduce an efficient DFT-domain algo-
rithm for the computation of the output of a P -th order Volterra
filter in DCR allowing for different memory length for each ker-
nel. It is shown that the DCR is especially efficient for modeling
the cascade of a Volterra filter followed by a linear filter, as re-
quired for the compensation of nonlinear acoustic echos described
above. Then, an adaptive realization of this approach is introduced
that can be considered as a generalization of the well-known DFT-
domain adaptive algorithm for linear systems [3] to P -th order
Volterra filters. The performance of the adaptive algorithm for the
second-order case is then evaluated for the acoustic echo cancella-
tion application using real measured data.

2. VOLTERRA FILTERS IN DIAGONAL COORDINATE
REPRESENTATION (DCR)

The input/output relation of a finite length P -th order Volterra filter
is given by

y(k) =
P�

p=1

yp(k) (1)

where the output yp(k) of the p-th order Volterra kernel reads

yp(k) =

Np � 1�
np,1=0 � � �

Np � 1�
np,p=np,p � 1

hnp

p�
i=1

x(k � np,i). (2)

np = [np,1, np,2, . . . , np,p] represents the index vector of the p-th
order Volterra kernel coefficients corresponding to a p-dimensional
Cartesian coordinate system. Note that the memory lengths Np of
the Volterra kernels can in general be different for each order p.
Following [4], the corresponding diagonal coordinate representa-
tion of (2) is obtained by a coordinate transformation of the index
vector np. For the DCR we define the following two index vectors

rp = [rp,1, rp,2, . . . , rp,p � 1], (3)

rp(l) = [l, rp,1 + l, . . . , rp,p � 1 + l], (4)

where rp references a certain diagonal that is parallel to the main
diagonal (rp,i = 0 	 i) of the corresponding p-dimensional Carte-
sian coordinate system described by the original index vector np.
Accordingly, rp(l) represents a certain position on the diagonal
rp, i.e., it references a certain coefficient of the Volterra filter. Note
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that for the linear kernel r1 = [ ], and r1(l) = l. Introducing the
input signal of the diagonal rp according to

xrp
(k) = x(k)

p � 1�
i=1

x(k � rp,i), (5)

where xr1(k) = x(k), we rewrite (2) as

yp(k) =

Np � 1�
rp,1=0 � � �

Np � 1�
rp,p � 1=rp,p � 2

yrp
(k), (6)

yrp
(k) =

Lp(rp) � 1�
l=0

hrp(l) xrp
(k � l). (7)

where the length of hrp(l)

Lp(rp) = Np � rp,p � 1 (8)

depends on both, the kernel order p, and the actual value of rp,p � 1.
Note that for the linear kernel y1(k) = yr1(k) and L1(r1) = N1.
Obviously, yrp

(k) can be considered as the output of the linear
FIR filter hrp(k) with the input signal xrp

(k):

yrp
(k) = hrp(k) � xrp

(k). (9)

Considering (6), yp(k) can therefore be interpreted as the output of
a linear multiple input/single output (MISO) system, where each
diagonal with index vector rp corresponds to one linear channel
with input xrp

(k). Extending this interpretation to the computa-
tion of the output of the Volterra filter according to (1), y(k) can
be considered as the output of a special MISO system featuring
a combination of P multichannel structures, where each channel
corresponds to one particular diagonal of the DCR.

2.1. Application to cascaded structures

In the following, we show that the DCR is especially suited to
represent certain nonlinear cascaded systems. Fig. 2 illustrates the
configuration of a P -th order Volterra filter hrp(l) followed by a
linear FIR filter with coefficients cl. As the convolution is a linear

x(k) y(k) z(k)
hrp(l) cl

Fig. 2. Cascaded structure consisting of a P -th order Volterra filter
followed by a linear FIR filter.

operation, the computation of the output of the cascaded structure
directly follows from (1), (6), and (9):

z(k) =

P�
p=1

Np � 1�
rp,1=0 � � �

Np � 1�
rp,p � 1=rp,p � 2

zrp
(k), (10)

where the output zrp
(k) of each DCR-channel yields

zrp
(k) = ck � hrp(k) � xrp

(k) (11)

= vrp(k) � xrp
(k). (12)

We note from (10)-(12) that z(k) can be considered as the out-
put of a specific P -th order Volterra filter vrp(k) with input x(k),

where the number and the position of the diagonals is not changed
compared to the Volterra filter hrp(k). However, the length of the
filter in each DCR-channel with index vector rp is increased ac-
cording to 	

Lp(rp) = Lp(rp) + Nc � 1, (13)

where Nc denotes the length of the linear filter.
In the AEC context (Fig. 1), the echo path to be modeled

by the AEC is composed of a loudspeaker, the transfer function
between loudspeaker and microphone, and the microphone itself.
The transfer function between loudspeaker and microphone (i.e.,
the room impulse response) and the characteristics of the micro-
phone can usually be considered as linear and, thus, can be mod-
eled by an FIR filter. As the nonlinear behavior of the loudspeaker
can be taken into account by using a second-order Volterra filter,
the overall structure corresponds to Figure 2 for P = 2.

3. MULTIDELAY VOLTERRA FILTERS IN DCR

In this section we introduce an efficient computation of the output
of a Volterra filter in DCR applying partitioned block methods for
fast convolution in the DFT domain. Following [3], a block parti-
tioned version of (9) is obtained by partitioning hrp(l) into B(rp)
blocks of length N ,

hrp(i),b = hrp(l) 

 l=i+bN
, (14)

and defining the input signal of each partition according to

xrp,b(k) = xrp
(k � bN). (15)

Then, (9) can be rewritten as

yrp
(k) =

B(rp) � 1�
b=0

hrp(k),b � xrp,b(k). (16)

The number of partitions B(rp) of each diagonal at position rp

has to be chosen such that�
B(rp) � 1 � N < Lp(rp)  B(rp)N. (17)

Accounting for (13), we allow Lp(rp) > Np in the following.
The values for Np, i.e., the maximum distance of a diagonal to
the main diagonal of the p-order kernel, and the length along the
main diagonal, i.e., Lp(rp = 0), can then be used to specify the
region of support of a Volterra filter. In order to exploit fast convo-
lution techniques in the DFT domain via block processing for the
computation of the convolutions appearing in (16) we define the
following signal vectors composed of overlapping signal blocks:

yrp
(m) = � yrp

(mR), . . . , yrp
(mR + N � 1) � T

, (18)

xrp,b(m) = � xrp,b(mR � N), . . . , xrp,b(mR + N � 1� T

(19)

where m represents a block time index with k = mR. The positive
integer R = N/α equals the number of new samples of successive
signal blocks. The parameter α is usually referred to as overlap-
ping factor [3]. Note that yrp

(m) has length N , while the input
signal vector xrp,b(m) has the length 2N . Furthermore, we com-
bine the coefficients hrp(l),b of each partition to obtain the vectors

hrp,b =
�
hrp(bN), hrp(bN+1), . . . , hrp(bN+N � 1) � T

. (20)
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Note that

hrp(l),b � 0 for l + bN � Lp(rp), (21)

i.e., the definition of hrp,b according to (20) implies zero-padding
for b = B(rp) � 1 if Lp(rp) < B(rp)N . As we want to apply
the overlap/save method [5], we define the DFT-domain vectors of
length M = 2N according to

Yrp
(m) = FM � 0T

N � 1 yT
rp

(m)� T

, (22)

Xrp,b(m) = FM xrp,b(m), (23)

Hrp,b = FM � hT
rp,b 0T

N � 1 � T

, (24)

where FM denotes the M � M DFT matrix and 0N � 1 represents
the N � 1 zero vector. Thus, we obtain

Yrp
(m) =

B(rp) � 1�
b=0

G diag 	 Xrp,b(m) 
 Hrp,b, (25)

with the abbreviation

G = FM � 0N � N 0N � N

0N � N IN � N � F � 1
M , (26)

where 0N � N represents the N � N zero matrix and IN � N denotes
the N � N identity matrix. The DFT-domain output of the Volterra
filter is given by

Y(m) =
P�

p=1

Np,p  1�
rp,1=0 � � �

Np � 1�
rp,p  1=rp,p  2

Yrp
(m), (27)

Taking the relation between circular and linear convolution into
account [5], we notice that the first N elements of the time-domain
correspondence Y(m), i.e.

y̆(m) = F � 1
M Y(m), (28)

are corrupted by time-domain aliasing, while the last N elements
of y̆(m) result from a linear convolution and represent the desired
output values y(k). Thus, the time-domain output signal block of
the Volterra filter, i.e.,

y(m) = [y(mR), y(mR + 1), . . . , y(mR + N � 1)]T , (29)

is finally obtained as

y(m) = [0N � N IN � N ] F � 1
M Y(m). (30)

Note that for an overlapping factor α > 1, only the first R ele-
ments represent new values of y(k), whereas the remaining N � R
elements have already been computed in previous block time steps.
However, choosing α > 1 is beneficial for the adaptive implemen-
tation of the Volterra filter that is presented in the next section, as
then, the adaptation of the kernel coefficients is performed α times
more frequently, resulting in an increased convergence speed of
the adaptive algorithm.

It should be mentioned that for the special case that all ker-
nels have the same memory length (i.e., Li(0) = Lj(0)) and no
partitioning is applied (i.e., B(rp) = 1), the above algorithm re-
duces to the approach presented in [6]. Clearly, for the considered
application to nonlinear acoustic echo cancellation this restrictions
would lead to very inefficient system configurations, as N2 � N1

is sufficient for modeling the nonlinear behavior of loudspeakers
in the AEC context [2].

4. ADAPTATION OF MULTIDELAY VOLTERRA
FILTERS IN DCR

Aiming at an adaptive DFT-domain implementation of the multi-
delay Volterra filter, we define the time-domain signal vectors

d(m) = [d(mR), d(mR + 1), . . . , d(mR + N � 1)]T, (31)

e(m) = [e(mR), e(mR + 1), . . . , e(mR + N � 1)]T, (32)

where according to Fig. 1, e(k) = d(k) � y(k) represents the
time-domain error signal. The corresponding DFT-domain signal
vector are given by

D(m) = FM � 0T
N � 1 dT (m) � T

, (33)

E(m) = FM � 0T
N � 1 eT (m) � T

. (34)

Next, we define the DFT-domain cost function to be minimized by
the adaptive algorithm as

J(m) = � 	 EH(m)E(m) 
 , (35)

where the superscript H denotes the Hermitian operator and � � �
represents expectation. We notice from (25), (27) that Y(m) is
linear with respect to the Volterra filter coefficients Hrp,b. Further-
more, (25) can be considered as the DFT-domain representation of
the computation of the linear convolution between the linear filter
hrp

and the input xrp
(m) applying the overlap/save method in its

partitioned block version. Therefore, the results presented in [3]
can directly applied to obtain an NLMS-type update equation:

Hrp,b(m + 1) = Hrp,b(m) + µp

�
Grp,b ∆rp,b(m), (36)

where µp represents a positive step-size parameter. The update
term ∆rp,b(m) is given by

∆rp,b(m) = S � 1(m)E(m) diag 	 Xrp,b(m) 
 , (37)

where A denotes the conjugate complex of A. S � 1(m) is the
inverse of a diagonal normalization matrix

S(m) = diag 	 � S(0)(m), S(1)(m), . . . , S(M � 1) � 
 . (38)

The computation of S(m) is discussed later in this section. The
constraint matrix

�
Grp,b is given by�

Grp,b = FM diag 	 � 1rp,b 0rp,b � 
 F � 1
M . (39)

The row vector 1rp,b contains only ones and its length depends on
the actual diagonal rp and the partition number b:

length 	 1rp,b 
 = � N, for b < B(rp) � 1
Lp(rp) � (b � 1)N, for b = B(rp) � 1.

0rp,b represents a zero vector of appropriate length, such that

�
Grp,b

is an M � M matrix:

length 	 0rp,b 
 + length 	 1rp,b 
 = M. (40)

Note that the definition of

�
Grp,b in (39) implies that both, the

time-domain constraint on Hrp,b according to (24), i.e., the zero
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padding of hrp,b, and the constraint on the region of support of the
Volterra filter according to (21) are fulfilled by the update equation
(36). Next, we consider the computation of S(m). In the follow-
ing, A(i) always denotes the i-th element of a vector A. For the
discussion of the computation of S(m) it will be useful to define
the vectors Xν(m) and Hν , respectively, which are composed of
the ν-th element of all vectors Xrp,b(m) and Hrp,b, respectively.

The elements of Xν(m) and Hν are arranged such that Y (ν)(m),
i.e., the ν-th element of Y(m) can be expressed by

Y (ν)(m) = HT
ν Xν(m). (41)

The update term ∆ν(m) with respect to Hν(m) which corre-
sponds to ∆rp,b(m) according to (37) yields

∆ν(m) =
E(ν)(m)Xν(m)

S(ν)(m)
. (42)

Following the normalization technique commonly used for adap-
tive DFT-domain approaches, the normalization factor S(ν)(m) is
chosen independently for each DFT bin [3]. As the input signals
of different diagonals with index vectors ui,vi are in general not
orthogonal for arbitrary excitation x(k), i.e.,

� � xui
(k)xvj

(k) � �= 0, (43)

the elements of Xν(m) are also not orthogonal to each other, i.e.,

� � X(ρ)
ν (m)X

(κ)
ν (m) � �= 0, � ρ, κ. (44)

Discarding the constraint matrix

�
Grp,b in (36) and regarding (42),

the reasoning for a complex-valued NLMS algorithm as given in
[7] can directly be applied to obtain S(ν)(m) according to

S(ν)(m) = � � XH
ν (m)Xν(m) � , (45)

i.e., the powers of the ν-th element of all vectors Xrp,b(m) have

to be added up for the computation of S(ν)(m). If the normaliza-
tion is performed using (45), the step-size parameter µp should be
chosen from the interval 0 < µp < 2.

5. SIMULATION RESULTS

Our evaluation of the proposed algorithm is based on recorded
speech data from a low-cost loudspeaker placed in an enclosure
with low reverberation. As mentioned earlier, the nonlinear be-
havior of loudspeakers can be modeled be second-order Volterra
filters and, thus, P = 2 has been chosen for the simulations. The
performance is measured using the Echo Return Loss Enhance-
ment (ERLE) which is defined by

ERLE = 10 log10

E � d2(k) 	
E 
 e2(k) � [dB]. (46)

The parameters of the multidelay DFT-domain Volterra filter have
been chosen to N = 64, B(r1) = 6 and L1(r1) = B(r1)N for
the linear kernel. For the quadratic kernel, the maximum distance
of any diagonal to the main diagonal has been set to N2 = 20,
and no partitioning has been applied, i.e., B(r2) = 1 implying
L2(r2 = 0) = N . An overlapping factor α = 4 has been used.
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Fig. 3. Comparison of different nonlinear approaches and a linear
DFT-domain algorithm for a realistic AEC scenario together with
the input signal.

The resulting ERLE curve is compared to a time-domain adap-
tive Volterra filter (TDAVF) with the same region of support as the
DFT-domain approach applying an NLMS algorithm [1], and to
a linear DFT-domain echo canceler in Fig. 3. We notice that ex-
tending the linear AEC to a second-order Volterra filter leads to
an improved performance if the nonlinear distortion in the echo
path is caused by loudspeakers, and that the proposed approach
provides a faster convergence speed compared to the TDAVF.

6. CONCLUSION

We presented an efficient and fast-converging DFT-domain algo-
rithm for the adaptation of P -th Volterra filters in DCR, where the
region of support, i.e., the memory length and the number of diag-
onals, can be chosen different for each Volterra kernel. It has been
shown that the DCR is especially suitable for cascaded structures,
where a Volterra filter is followed by a linear filter. Simulation re-
sults with respect to nonlinear acoustic echo cancellation confirm
the increase in convergence speed compared to a corresponding
time-domain approach.

7. REFERENCES

[1] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Pro-
cessing, John Wiley and Sons, New York, 2000.

[2] M. J. Reed and M. O. Hawksford, “Practical modelling of
nonlinear audio systems using Volterra series,” Journal of the
Audio Engineering Society Preprint 4264, 1996.

[3] E. Moulines et al., “The generalized multidelay adaptive filter:
Structure and convergence analysis,” IEEE Trans. on Signal
Processing, vol. 43, no. 1, pp. 14–28, Jan. 1995.

[4] G. M. Raz and B. D. Van Veen, “Baseband Volterra filters for
implementing carrier based nonlinearities,” IEEE Trans. on
Signal Processing, vol. 46, no. 1, pp. 103–114, Jan. 1998.

[5] J. G. Proakis and D. G. Manolakis, Digital Signal Processing:
Principles, Algorithms and Applications, Prentice Hall, New
Jersey, 3rd edition, 1996.
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