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ABSTRACT

In various estimation problems the system being estimated
may be represented by a sparse parameter vector, such that
only a ’small’ number of the vector elements are ’signifi-
cant’ or ’active’. In this paper we propose an NLMS esti-
mator which incorporates a least squares based active pa-
rameter criterion; such that NLMS adaptation is applied
only to those system parameters detected as being active.
This results in a significant improvement in convergence
rates, as compared to the standard NLMS estimator. Im-
portantly, for sparse systems, the computational cost of the
newly proposed detection guided NLMS estimator is only
slightly greater than that of the standard NLMS estimator.

1. INTRODUCTION

We define a sparse system as one in which the system is rep-
resented by a finite parameter set; and many of the parame-
ters within this set are ’insignificant’ or ’inactive’. Sparsely
parametrized systems exist in many applications, such as
temporal and spatial acoustic echo paths within hands-free
telephony [1]. Estimation of such sparsely parametrised
systems, via the common parallel configuration of Figure
1, is often conducted using the popular normalised least
mean square (NLMS) estimator [2]. The standard NLMS
approach involves adaptation of each and every parame-
ter during each sample interval. However, this approach is
plagued by slow convergence rates when the system has a
long parameter representation. Highly correlated input sig-
nals, such as the speech signals within communication sys-
tems, tend to further worsen the convergence rates [3].

An approach to combat these effects is to NLMS esti-
mate only the ’active’ parameters. The key to this approach
lies in the use of a suitable activity criterion for accurately
determining whether any particular parameter is active. Fol-
lowing on from the work of Homer et. al. [4], [5], we pro-
pose an activity criterion which is based on the minimisation
of a structurally consistent least squares (SC-LS) cost func-
tion. Our proposed LS detection guided NLMS estimator
applies the activity criterion during each sample interval to

determine the active parameters, and subsequently updates
the NLMS estimate only for those parameters. Simulations
indicate that, for sparsely parametrised systems, the pro-
posed estimator converges considerably more quickly than
the standard NLMS estimator. Furthermore, for sparse sys-
tems, the computational cost of the proposed estimator is
only slightly greater than that of the standard NLMS esti-
mator.

Based on optimising (minimising) the asymptotic pa-
rameter estimation error, a parameter is ’significant’ or ’ac-
tive’ ... and should be NLMS estimated ... if its magnitude
lies above the NLMS adaptive noise level [4]. Otherwise,
the parameter is ’insignificant’ or ’inactive’ and should not
be NLMS estimated. Simulations indicate that the proposed
NLMS estimator typically detects (and estimates) all active
parameters, while it typically ignores (does not estimate)
the inactive parameters. In summary, the proposed NLMS
estimator, in comparison to the standard NLMS estimator
provides significantly improved convergence rates, without
compromising the asymptotic estimation performance, and
with only slightly increased computational costs. Additional
simulations (not reported here) indicate that the proposed
estimator also has a fast tracking capability of time varying
systems.
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Fig. 1. System estimation configuration

2. SYSTEM ESTIMATION CONFIGURATION

The configurationwe consider throughout this paper is shown
in Figure 1. We assume that the unknown system is a MISO
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linear, time invariant system which is modeled by a para-
metric vector θ = {θj}n−1

j=0 = [θ0, θ1, ..., θn−1]T . We as-
sume all signals are sampled. At sampling instant k: U(k) =
{uj(k)}n−1

j=0 is the signal input vector to the unknown sys-
tem and the estimator; an additive disturbance, s(k), oc-
curs at the output of the unknown system; and y(k) is the
observed output from the unknown system. The observed
system output is given by: y(k) = U(k)T θ+s(k). The out-
put from the estimator is ŷ(k) = UT (k)θ̂(k) where θ̂ =
[θ̂0 θ̂1 ... θ̂n−1]T is an estimate of the parameter vector θ.
The adaptive NLMS estimator equation is:

θ̂(k + 1) = θ̂(k) +
µ

UT (k)U(k) + ε
U(k)e(k), (1)

where: e(k) = y(k) − ŷ(k); µ and ε are small positive
constants.

Remark1: The above system configuration, with the fol-
lowing change in notation uj(k) → u(k − j), is also appli-
cable to one-dimensional temporal signal-channels, such as
temporal acoustic echo channels. Such channels are SISO
systems.

In addition to the above we assume the following. (i)
The elements of the input signal vector are samples of zero
mean, bounded, wide sense stationary process(es) of vari-
ance σ2

u. (ii) The disturbance signal is a zero mean, bounded,
wide sense stationary white process of variance σ2

s . (iii) The
disturbance signal is uncorrelated with the input signal vec-
tor. (iv) The unknown system, θ, is sparsely active:

θ = [η(M1), θt1, η(M2), θt2, ..., θtm, η(Mm)]

where: m � n; 0 ≤ t1 < t2 < ... < tm ≤ n − 1;
Mi = ti−ti−1−1; θti =active parameter; η(Mi) =vector
containing Mi inactive parameters. We define an active pa-
rameter as a parameter with a magnitude greater than the
NLMS adaptive noise level [4]: |θti| >

√
µσ2

s/(m̂σ2
u),

where m̂ is the estimate of m. Each of the remaining pa-
rameters is defined as an inactive parameter.

3. DETECTION GUIDED NLMS ESTIMATION

The activity criterion within our detection guided estimator
is derived from the following structurally consistent least
squares based cost function [4]:

VSCLS(N) = VLS(N) + mσ2
ylogN (2)

where: VLS(N) =
∑N

k=1[y(k) − θ̂T U(k)]2; σ2
y = vari-

ance of y(k); m = unknown number of active parameters;
θ̂ = estimate which contains only m nonzero parameters. In
general, minimisation of VSCLS(N) requires examination
and comparison of a very large number Cn

m of parameter
sets: Cn

m =
∑n

m=1
n!

(n−m)!m! .

The development of the activity criterion begins by as-
suming the input signal vector has uncorrelated elements.
Then for sufficiently large N we may approximate VSCLS

of (2) by [4]:

ṼSCLS =
N∑

k=1

y2(k) −
m∑

i=1

[Xti(N) − σ2
ylogN ] (3)

Xti(N) =
[
∑N

k=1 y(k)uti(k)]2
∑N

k=1 u2
ti(k)

. (4)

It is apparent that ṼSCLS is minimised by (and hence the
indices of the active parameters correspond to) those indices
ti = j which satisfy:

Xj(N) > T (N) (5)

where T (N) = σ2
ylogN ≈ logN

N

N∑

k=1

y2(k).

Note, this relatively simple criterion for determining the
active parameter indices stems from the parameters within
ṼSCLS being decoupled.

The criterion of (5) is not applicable to the case in which
the input signal vector elements are correlated. This is be-
cause the correlation causes coupling between the param-
eters within the Xj(N) numerator term

∑N
k=1 y(k)uj(k).

As such, Xj(N) is dependent not only on parameter θj but
also on the neighbouring parameters.

To reduce the coupling between neighbouring parame-
ters, we propose the following three modifications.
Modification 1: Replace Xj(N) by:

XXj(N) =
[
∑N

k=1{e(k) + θ̂j(k)uj(k)}uj(k)]2
∑N

k=1 uj(k)2
. (6)

Modification 2: Replace T (N) by:

TT (N) =
logN

N

N∑

k=1

e2(k). (7)

Modification 3: Include the exponentially forgetting oper-
ator: WN (k) = (1 − γ)N−k, 0 < γ � 1 within the
summation terms of XXj(N) and TT (N).

The purpose of Modification 1 is based on the following.
The cause of parameter coupling in Xj(N) arises from the
following numerator term:

numXj(N) �=
1
N

N∑

k=1

y(k)uj(k)

=
1
N

[
N∑

i=1

∑

p�=j

(θpup(k)uj(k)

+ θjuj(k)uj(k) + s(k)uj(k)].
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The first component in the summation is the cause of param-
eter coupling. This becomes more significant with an in-
crease in the correlation amongst the input signal elements.

The equivalent numerator term of XXj(N) is:

numXXj(N)
�
=

1
N

[
N∑

k=1

{e(k) + θ̂j(k)uj(k)}uj(k)]

=
1
N

[
N∑

k=1

∑

p�=j

(θp − θ̂p(k))up(k)uj(p)

+ θjuj(k)uj(k) + s(k)uj(k)].

Here the parameter coupling effect of the first term should
be significantly weakened, assuming θ̂p(k) converges to-
wards θp (for p = 0, 1, ..., n− 1.)

Modification 2 stems from the realisation that for inac-
tive taps (and assuming θ̂inactive ≈ 0) the numerator term
numXXj(N) is approximately:

numXXj(N) ≈ 1
N [

∑N
k=1 e(k)uj(k)].

Consequently, combining this with the LS theory on which
the original activity criterion (5) is based, then suggests this
second proposed modification. This reasoning for Modifi-
cation 2, however, is only relevant if the system estimation

error vector ∆θ(k)
�
= θ− θ̂(k) is non-time varying. Clearly,

this is not the case. Modification 3 reduces the effect of the
time varying nature of ∆θ(k).

Remark2: The inclusion of Modification 3 also improves
the applicability of the proposed detection guided estimator
to time varying systems. This capability of the proposed
estimator is not explored in this paper.

The proposed LS detection guided NLMS estimator is
as follows.
For each parameter index j:

1. (a) Initialise rj(0) = ε1, 0 < ε1 � σ2
u. (b) Initialise:

pj(0) = q(0) = a(0) = 0.
2. At each sample interval N :

pj(N) = (1 − γ)pj(N − 1)

+[e(N) + θ̂j(N)uj(N)]uj(N)
rj(N) = (1 − γ)rj(N − 1) + u2

j(N)

q(N) = (1 − γ)q(N − 1) + e2(N)
a(N) = (1 − γ)a(N − 1) + 1

XXj(N) = p2
j(N)/rj(N)

TT (N) = q(N)log{a(N)}/a(N).

3. If XXj(N) > TT (N) then label j as an active pa-
rameter index ti; otherwise label j as an inactive parameter
index.

4. For each detected active parameter index update the
NLMS estimate:

θ̂j(N) = θ̂j(N − 1) +
µe(k)uj(N)∑
ti u2

ti(N) + ε

where
∑

ti =summation over all detected active tap in-
dices.

5. For each identified inactive parameter index reset the
NLMS estimate to zero.

We measure computational complexity by the number
of multiplications per sample interval (MPSI). The MPSI
required depends on whether we are considering a MISO
system or a temporal SISO system (See Remark1).
(i) For the MISO system, the standard NLMS estimator re-
quires 3n+2 MPSI. The proposedNLMS estimator requires
6n + 2m + 4 MPSI.
(ii) For the temporal SISO system, the standard NLMS esti-
mator requires 2n+3 MPSI. The proposed NLMS estimator
requires 4n + m + 5 MPSI.
(Note: The aboveMPSI numbers assume the values of a(N)
and log{a(N)}/a(N) are available from a look-up table.)
Hence, for sufficiently long sparse systems (n � 1, n �
m), the computational cost of the proposed detection guided
NLMS estimator is essentially twice that of the standard
NLMS estimator.

4. SIMULATIONS

Simulations were conducted to compare the performance of
the standard NLMS estimator with that of the newly pro-
posed LS detection guided NLMS estimator. The systems
considered were based on one-dimensional temporal signal-
channels; such that θ corresponded to the impulse response
vector of the signal-channel: θ → Θ(z−1) = [θ0 +θ1z

−1 +
...+θn−1z

−n+1]. Accordingly, the system has a single input
signal stream u(k) and the input signal vector U(k) corre-
sponds to: U(k) = [u(k), u(k − 1), ..., u(k − n + 1)].

The simulations involved the following: input signals
u(k) described by the correlated signal model:

u(k) = w(k)/[1 − 0.8z−1],
where w(k) is a discrete white zero mean unit variance Gaus-
sian process; disturbance signals s(k) described by a dis-
crete white zero mean unit variance Gaussian process; con-
stants µ = 0.01, ε = 0.1, ε1 = 0.001, γ = 0.0001. Zero
initial conditions θ̂(k = 0) = 0(100) were employed for
each of the estimators.

Two different system parameter vectors were consid-
ered, each having a length of n = 100. Their active pa-
rameters were as follows.
θ1 : θ30 = 0.2; θ41 = −4; θ52 = −0.04; θ82 = 10.
θ2 : θ11:15 = randn(5); θ56:65 = randn(10).

where randn(G) denotes a vector of G samples of a unit
variance zero mean white Gaussian process. The first sys-
tem parameter vector contains 4 sparsely separated active
parameters; the second contains 15 active parameters in the
form of two sparsely separated ’clusters’. All other param-
eters are inactive; that is their magnitudes lie below the
NLMS adaptive noise level. A log plot of the parameter
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magnitudes for both systems is shown in Figure 2.
The (asymptotic) NLMS adaptive noise level [4]

limk→∞|∆θj(k)| =
√

µσ2
s/(m̂σ2

u), ∀j

for each of the two system simulation conditions is: (i) Sys-
tem1: 0.03 (for m̂ = 4); (ii) System2: 0.0155 (for m̂ = 15).
These levels are indicated by a horizontal line in the respec-
tive log plots of Figure 2. Note: (i) System1 has one of its
active parameters (θ52) very near the adaptive noise level;
(ii) System2 has one of its active parameters (θ70) relatively
near the adaptive noise level, and has several of its inactive
parameters lying just under the adaptive noise level.

Figure 3 shows the simulation results for System1. Fig.
3(a) shows the plot over time (sample number) of the num-
ber of parameters, m̂, detected as being active....using the
proposed activity criterion. Fig. 3(b) shows the correspond-
ing log plot over time of the parameter vector estimation
error ||θ − θ̂(k)||2 where ||.|| denotes the Euclidean norm.
The plots are the average of 10 equivalent simulations. Fig-
ure 4 shows the corresponding results for System2.

These two figures (together with an examination of the
actual detected parameter indices) indicate the following.
(a) For both systems the proposed activity criterion con-
verges relatively quickly towards the true set of active pa-
rameters. For both systems the activity criterion slightly
over-estimates the true number of active parameters; moreso
for system2, but this is to be expected since several of the
inactive parameters lie just below the adaptive noise level.
(b) For both systems the proposed NLMS estimator con-
verges (θ̂(k) → θ) significantly more quickly than the stan-
dard NLMS estimator; moreso for system1, but this is to be
expected since system1 has fewer active parameters. Note,
for each system the proposed estimator has an asymptotic
parameter estimation error close to that theoretically ex-
pected for the NLMS estimator: limk→∞||θ − θ̂(k)||2 =
µσ2

s/σ2
u = 0.0036.
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