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ABSTRACT

The auxiliary vector filter (AVF) and the multistage
Weiner filter (MSWF) are two important categories of
reduced-rank filters and have been widely applied to the
adaptive signal processing domain. The relationship
between AVF and MSWF has also drawn a lot of attention.
It has been indicated that AVF is equivalent to MSWF due
to the identical reduced-rank subspace in the literature.
However, except for the same subspace, the structures and
the corresponding parameters of AVF are considerably
different to that of MSWF. In order to gain further
insights on the equivalence between AVF and MSWF, a
computation scheme of parameters and a nested structure
are presented for AVF in this paper. According to the
identical nested structure, it can be proven that AVF has
the same parameters as MSWF, which are calculated in
different ways. As a consequence, it can be claimed that
AVF and MSWF are two alternative computation schemes
for the same reduced-rank filter.

1. INTRODUCTION

In adaptive filtering domain, reduced-rank filters have
attracted a considerable amount of research due to their
satisfactory adaptive performance and low complexity,
where the auxiliary vector filter (AVF) [1] and the
multistage Weiner filter (MSWF) [2] are two most
attractive reduced-rank filters proposed recently. In
contrast with eigen-subspace based reduced-rank filters,
AVF and MSWF require no eigen decomposition and thus
lower computational complexity and are able to provide
better performance with the same rank of reduced-
dimension subspace. On the other hand, AVF and
MSWF can obtain the same performance by employing
dissimilar structure and different computation methods of
parameters. Consequently, their relationship has evoked
much research interest. The equivalence of their
reduced-rank subspace has been identified in [3].
Nevertheless, further insights on the relationship between
AVF and MSWF is necessary. To this end, a calculation
method for the coefficients of auxiliary vectors and a
nested structure are presented for AVF in this paper. On
the basis of the same nested structure, it is proven that the
parameters of AVF are identical to that of MSWF. That

is to say, through DSP implementation AVF and MSWF
can be thought of as two different schemes for the
computation of the same reduced-dimension filter.

2. BACKGROUND

In this section, the basic principles of MSWF and AVF are
firstly reviewed. Without loss of generality, a general
discrete-time baseband signal model is used since the
studies of AVF and MSWF in this paper won’t be
restricted to one special application domain. Assume

( )ib to be the desired signal and ( )ix the 1×N received
signal vector, ( ,2,1,0=i ), which contains the desired
signal, interferences and additive white Gaussian noise
(AWGN). Then, ( ) ( ){ }iiE H

x xxR ⋅= denotes the
covariance matrix of the received signal vector and

( ) ( ){ }ibiExb
∗= xr the cross-correlation vector between the

desired signal and the received signal vector, where [ ]H

and [ ]∗ respectively denote the conjugation transpose
operator and the conjugation operator.

2.1 The Multistage Wiener Filter

The general structure of the rank 1+D MSWF is
depicted in Fig.1, which is divided into an analysis stage
and a synthesis stage and given by the following set of
recursions.

For Dd ,,1,0= (Analysis Stage)
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where ( ) ( )ibiz =0
~ , ( ) ( )ii xx =0 , and NI denotes an

NN × identity matrix.

Decrement 0,,Dd = (Synthesis Stage)

( ) ( ){ } ( ){ }2

1
~~~~ iEiizE dddd εεη ⋅= ∗

+ , (5)

( ) ( ) ( )iizi dddd εηε ~~~~
1 ∗−= ∗

− . ( 0>d ) (6)

where ( ) ( )izi DD 1
~~

+=ε .

According to Formula (1), xbxb rrg =0
~ , and when 1≥d

dg~ can also be described by [4]
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Fig.1 The MSWF structure I
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Let xbp r=0 , d
H
ddp gRg ~~

1−= ( Dd ,,1= ), and

d
H
ddq gRg ~~= ( Dd ,,1,0= ), based on (5) and (6), { }D

dd 0
~

=η
can be calculated as follows:

ddd p ξη =~ , ( 0,1,,Dd = ) (8)

( ){ } 1
2

1

2~
++−== ddddd pqiE ξεξ . ( 0,1,,1−= Dd ) (9)

where ( ){ } DDD qiE == 2~εξ .

Since ddi

d

i
ggB =⋅Π

=1
, the general structure of MSWF can

be simplified as the MSWF structure II, which is shown in

Fig.2. The corresponding MSWF is given by

( )( )( )⋅−⋅−⋅= 21100
~~~~~ ηηη HHH

MSWF ggw . (10)

2.2 The Auxiliary Vector Filter

The general structure of the rank 1+D AVF is drawn in
Fig.3, where xbxb rrg =0 , { }D

dd 1=g are the auxiliary

vectors and computed by [3]
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Define [ ]DgggG 10= and [ ]Duuu 10=u , then,
AVF, which corresponds to the AVF structure I, is given
by

H
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Fig.3 The AVF structure I

According to the MMSE criterion, the optimum u ,
which minimizes ( ) ( ){ }2

iibE H xGu ⋅⋅− , can be obtained
by solving Equation (14).

xb
H ruGR =⋅⋅ . (14)

Since 0=j
H
i Rgg if 1>− ji , which is indicated in [3],

we can get the unified form of (3) and (4) as
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Comparing (15) with (7), the result that dd gg ~=
( Dd ,,1,0= ) can be obtained, i.e., AVF has the
equivalent reduced-rank subspace as MSWF [3]. In
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order to gain further insights on the equivalence of AVF
and MSWF, the relationship between the structure and
parameters of AVF and that of MSWF will be addressed
in the later sections.

3. THE CALCULATION SCHEME OF AVF’S

PARAMETERS

A low-complexity calculation scheme of AVF’s
parameters is presented in this section before analyzing
the relationship between the structure of AVF and that of
MSWF.
Since the vectors in G are orthogonal to each other [3],
by multiplying the two sides of Equation (14) by HG we
can get

( ) yuGRG =⋅⋅⋅ HH , (16)

where [ ]Txbxb
H 00rrGy =⋅= and [ ]T denotes

the transpose operator.
It is easy to verify that RGGH is a real symmetric
tridiagonal matrix [3]. Hence, the computation of u

can be simplified by using LU factorization and
Gaussian elimination to solve Equation (16) [5].
The matrix RGGH has the following form,

=

−
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, (17)

where d
H
ddq Rgg= and 11 −− == d

H
dd

H
ddp RggRgg .

By LU factorization, LURGG =H [5], where L and

U are respectively given by
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In L and U , let 00
~ qq = , { }D

ddp 1
~

= and { }D

ddq 1
~

= are
respectively obtained as follows.

1
~~

−= ddd qpp , ( Dd ,,2,1= ) (18)

dddd ppqq ~~ −= . ( Dd ,,2,1= ) (19)

Due to the features of the lower triangular matrix L and
the upper triangular matrix U , the solution u of
Equation (16) can be attained by a forward substitution
and a back substitution [5].
Forward substitution, let xby r=0

~ ,

1
~~~

−−= ddd ypy . ( Dd ,2,1= ) (20)

Back substitution, let 1~~ −= DDD qyu ,

( ) 1
11

~~ −
++−= ddddd qupyu . ( 1,1,0 −= Dd ) (21)

It is obvious that the computation complexity is only
( )NO rather than ( )3NO required by direct matrix

inversion.
4. FURTHER INSIGHTS ON THE

RELATIONSHIP BETWEEN AVF AND MSWF

In order to further understand the relationship between
AVF and MSWF after the proof of the equivalence of
their reduced-rank subspaces [3], it will be proven that
AVF can have the same structure and the corresponding
parameters as MSWF.
In AVF, let 00 u=η and 1−−= ddd uuη ( 1,2,,Dd = ),
we can derive the nested structure shown in Fig.4, which
is identical to the structure II of MSWF. Thus, AVF can
also be expressed by

( )( )( )⋅−⋅−⋅= 21100 ηηη HHH
AVF ggw . (22)

It is clear that AVF in (22) have the same form as MSWF
in (10). Since it has been known that dd gg ~= , we can
further prove that AVF is completely equivalent to MSWF
only if it is true that dd ηη ~= ( Dd ,,1,0= ).
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Fig. 4 The AVF structure II

According to the process of the calculation of u in
(18-21), we can get

1−−= ddd uuη

( ) 1
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It is seen from (8) that the proof of dd ηη =~ ( Dd ≤≤1 ) is
equivalent to prove that

( )ddddd uypp /~~
1−−=ξ . (24)

In addition, when 0=d , it is required to make sure that

000
~ u== ηη .

Proof:

When Dd = ,

( )DDDD uypp /~~
1−− −= −

−
1

1
~~

~
~

DD

D
DD qy

y
pp
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This completes the proof.
It is seen from the above proof that AVF in (13) is an
alternative computation scheme of MSWF in (10).

5. CONCLUSIONS

A nested structure of AVF and a computation method of
its corresponding parameters are presented in this paper.
It is proven that AVF and MSWF can get the same
coefficients by different methods in the same nested
structure. Therefore, AVF and MSWF can be regarded
as two alternative computation schemes for the same
reduced-rank filter. Moreover, it can be easily verified
that AVF and MSWF have close computational
complexity.
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