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ABSTRACT

In this work, a new algorithm based on minimum-disturbance
principle with relaxation is presented for the blind equaliza-
tion of complex signals. This algorithm combines the benefits
of the well-known reduced constellation algorithm (RCA) and
constant modulus algorithm (CMA). The convergence char-
acteristics of the proposed algorithm is demonstrated by way
of simulations. In addition, closed form expressions are ob-
tained for the statistical (dispersion) constants used in these
algorithms.

1. INTRODUCTION

In most digital communication systems, intersymbol inter-
ference (ISI) occurs due to bandwidth limited channels or
multipath propagation. Channel equalization is one of the
techniques to mitigate the effect of ISI. Adaptive algorithms
are used to initialize and adjust equalizer coefficients when a
channel is unknown and possibly time-varying. Convention-
ally, initial setting of the equalizer tap weights is achieved by
a training sequence before data transmission.

However, when sending a training sequence is impracti-
cal or impossible, it is desirable to equalize a channel without
the aid of a training sequence. Equalizing a channel with-
out training mode is known as blind equalization. Sato [1]
introduced the idea of blind equalization for multilevel pulse
amplitude modulation (PAM). Godard [2] and Benveniste at
al. [3] generalized the Sato’s algorithm for quadrature am-
plitude modulation (QAM); their algorithms are known as
constant modulus algorithm (CMA) and reduced constella-
tion algorithm (RCA), respectively. CMA is the most widely
studied algorithm. It provides reliable convergence, but in-
creases the complexity of implementation of the receiver in
steady-state operation because of the need to add a rotator
at the output of the equalizer. Rotator removes any possi-
ble phase offset error and facilitates the switching from blind
mode to decision-directed (DD) mode. However, it is analyti-
cally shown in [4] that RCA and a variant of CMA, known as
multimodulus algorithm (MMA) [5, 6, 7] exhibits an inherent
property of phase recovery. That is, in the presence of little
phase and/or frequency offset error(s), they will recover the
constellation automatically.
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In [8], Lin defined blind equalization as a constrained op-
timization problem. He used the error terms of MMA scheme
as constraints and minimized the squared Euclidean norm of
the change in the tap-weight vector. He finally obtained a nor-
malized version of RCA. In this work, we used the same cost
function proposed in [8]; and solved the deterministic opti-
mization criterion with a soft constraint to obtain an update
equation which contains a normalized gradient vector and a
particular non-linearity similar to MMA.

2. LIN’S MINIMUM-DISTURBANCE ALGORITHM
PRIMER

Consider the baseband representation for digital data trans-
mission in Fig. 1, where a(n) is the transmitted symbols,
v(n) is the channel noise, z(n) is the equalizer input and
a(n) is the output of the decision device. The equalizer tap-

o(n)
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Fig. 1. Blind equalization in the baseband.

weight vector and tap-input vector are respectively defined
as W(n) = [wo(n),wi(n), -+ ,wnx—1(n)]T and X(n) =
[z(n),z(n — 1),-- ,z(n — N + 1)]”. We define y(n) =
WH(n)X(n) and s(n) = WH(n + 1)X(n) respectively as
the actual and a posteriori equalizer outputs [9]. The objec-
tive is to achieve a(n) = e/’a(n— A) without using a training
signal available at the receiver. Lin proposed to formulate the
following deterministic optimization problem to achieve this
object

= i w 1)-W 2
7= gnin {IWn+1) - W)l +

Nisi(n)(s(n) = BR) + Xosi (n)(s1(n) = B3) } (1)

constraints

where A; and A, are the Lagrange multipliers and R and Ry
are dispersion constants defined in the sequel. We also define
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wm(n) = am(n) + 7 bm(n) and z(n — m) = u(n —m) +
Jv(n —m) form = 0,1,--- ;N — 1. The constraints in
(1) are used to make sure that any change in the tap-weight
vector is so smooth that the (blind mode) error signal caused
by updating the tap-weight vector can approach to zero. By
differentiating (1) with respect to real and imaginary parts of
W (n + 1), and then setting the results equal to zero, one can
obtain the following equations with substitutions s%(n) =
R? and s3(n) = R?,

am(n +1) — apm(n) + M RRu(n —m)

+XeR¥v(n —m) =0, )
b (n 4+ 1) — by (n) + A RRv(n — m)
X R3u(n —m) = 0. 3)

Multiplying (2) and (3) with u(n —m) and v(n — m), respec-
tively; the resulting equations are then added and subtracted
to yield the following expressions for the optimum Lagrange
multipliers A1, and s,

1
_m(slg(ﬂ) - yR(n))a

*m(sl(") —yr(n)).

)‘1*

4)
)\2* =

and the corresponding update equationis W (n+1) = W(n)—
(M« R% — 3 M. R?) X(n). Ateach n, hard constraints in (1)
enforce

{ sr(n) = Rp sign(yr(n))

sr(n) = Ry sign(yr(n)), )

which correspond to the exact solution of (1). The continued
use of these results will lead to the algorithm proposed in [8],
as follows
X(n)
Wn+1)=W(n)—- —==[yn) —
1X®)I13

{Rr sign(yr(n)) +j Ry sign(yr(n))} I*. (6)

2
Ellar]] Ellar
tively, as the dispersion constants for the real and imaginary
parts of the transmitted signal. It can easily be observed that
the Lin’s algorithm is actually the normalized version of RCA;
however, it is obtained by minimizing the so-called a posteri-
ori error as mentioned in Eq. (1).

where Rp = Elap] and Ry = % are defined respec-

3. PROPOSED MODIFICATION

In [10], authors presented a method to apply the constraints
on a deterministic cost function for blind equalization in a
soft manner. They introduced a controlling parameter p to
control the degree of constraint satisfaction. Inspired with
this technique, we introduce a similar parameter (the step-
size p) in Lin’s algorithm (Eq. (6)) to relax the control over
the convergence speed.

Incorporating a step-size in (2) and (3), we retain the con-
straint on sg(n) and s7(n) as a soft constraint. From (5) one
can obtain (allowing a little deviation from our initial opti-
mization statement in Eq. (1))

sgr(n) _ Rp
?;f((n”)) B |?J]I%§")| (7
yi(n) — lyr(n)|’

which modifies the Lagrange multipliers A1. and Az, (in Eq. (4))
to,

) () lunt)
we = e () ©
S 7 )

RIX@E " R

Substituting the new values of A1, and As, into (2) and (3)
and incorporating u, we get

+ ps Bu(n — m)
+ XRiv(n—m)] =0, (9)
+  pMRRv(n —m)
— X Riu(n —m)] =0. (10)

am(n+1) —am(n)

b(n+ 1) — by (n)

Solving (9) and (10), one can obtain

SR(n) = yR(n) )
l—p(l— \ZIII%%(:N) (11)
_ y1(n)
sp(n) =

1 p (1 lufml)

Therefore, instead of using s g, r(n) = R sign(yg,7(n)) which
is dictated by the criterion in (1), if the result obtained in (11)
is used then the following weight update will be obtained

u [ZJR(n) (1 - %)
IXIE | 1o (1 legioal)

RRr

yr(n) (1 - W)-I *X

17;;(17%”

This update equation is consistent with (6) in the sense that for
p = 1, the update equation in (12) reduces to (6). However, if
v is small, then around the desirable local solution, we have

1—p (M) ~ 1; thus simplifying (12) to

W(n+1) = W(n) +

+7 (n) (12)

— Win 7 o (1 lr@)
Wi+ 1) =W + 1 [yR( )<1 Ra )

s (1- %)] X(n) (13)
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The weight update equations in (12) and (13) are named SCS-

MMA and SCS-MMA-], respectively; where SCS-MMA stands

for soft constraint satisfaction multi-modulus algorithm. The
updates in SCS-MMA-I is easier to analyze compared with
SCS-MMA,; though, they are not vastly different for small p.
The real-time implementation of SCS-MMA-I is also straight
forward as it doesn’t have any division operation. Following
the derivation in [3], it is easy to show that for SCS-MMA-I,
we have

Rp = Ellar(n)’]/ Elag(n)] and Ry = Efjar(n)*]/ Ela7(n)].
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Fig. 2. Graphical representation of (a) RCA, (b) CMA, (c) SCS-MMA-I.

Let us compare the error terms used in Egs.(6) and (13).
Eq.(6) tries to minimize the distance between the equalizer
outputs and the statistical points £R £ jR. Thus those out-
puts which fall in the first quadrant are compared with R+ 3R
and those which fall in the second quadrant are compared
with —R + jpR. Similarly, for third and forth quadrants, the
equalized values are compared with —R — jR and R — )R,
respectively. A graphical representation of this behavior is
illustrated in Fig. 2(a). In contrast, Eq.(6) tries to move the
real and imaginary points of the equalizer output to reside on
the points of value +R or —R on real and imaginary axes,
respectively. This behavior is shown in Fig. 2(c). In Fig. 2(b),
the behavior of CMA algorithm is illustrated, which attempts
to derive the equalizer output to lie on the circle of radius R.
In Table 1, we provided closed form expressions to obtain the
exact values of dispersion constants (Rs) used in RCA, CMA
and SCS-MMA-I schemes for QAM constellations. Table 2
shows the numerical values of Rs for some QAM constella-
tions.

4. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
blind equalization algorithm. In all simulations, a complex
seven taps transversal equalizer was used and it was initialized
so that the center tap was set to one and other taps were set to
zero. The channel used in the simulation was taken from [11].
The signal to noise ratio (SNR) was taken as 30dB at the input
of the equalizer. The residual ISI is measured and compared
as performance parameter. The residual ISI at the equalizer
output at n-th iteration is defined as ISI(n) = (3 |s(n)|* —
[5(0) 2100/ 13(0) 2, Where {s(n)} = {e(n)} ® {w(n)}
is the overall system impulse response of the transmission
channel and the equalizer. |s(n)|2,,, is the component of the
{s(n)} having the maximum absolute value and ® denotes
convolution. At perfect equalization, the 1SI(n) becomes

zero. In simulation, normalization factor is removed from
all algorithms; as high oscillations were observed in weight
adaptation process due to their use, in the case of complex
channels with higher constellation sizes. Instead, we em-
ployed fixed step-sizes p in all algorithms to ensure the sta-
bility of adaptation process. A modified normalization factor
that doesn’t affect the stability is under study, and will be pre-
sented as a separate future work.

Now, we examine the ability of equalization of the three
algorithms - RCA, CMA and SCS-MMA-I on steady-state
constellation space, obtained with same convergence speed.
In CMA, we used a rotator at the output of the equalizer to es-
timate and remove the rotation of the constellation. The DD-
based phase-recovery algorithm used in simulation, is given
by 6(n + 1) = 6(n) — peIm[a*(n)ys(n)], where ug is the
step-size, yg(n) = e 7?("y(n), y(n) is the equalizer output,
and a(n) is the decision made on yg(n). Fig. 4 shows the sig-
nal constellations before and after the equalization. Each of
the constellations shows 300 data points. It can be seen that
the CMA had removed the ISI but was unable to remove the
constant phase-shift introduced by the channel. Fig. 3 depicts
that the rotator converged to —11°, and failed to recover the
45° phase ambiguity. Unlike CMA, RCA and SCS-MMA-I
mitigated the ISI and phase-shift without needing any rotator.
Howeyver, it can be seen that the data points are more aggre-
gate in SCS-MMA-I than those in RCA. It also shows that the
proposed algorithm performs better than the joint scheme of
CMA and DD-based phase recovery, even with reduced com-
plexity.

Fig. 5 depicts the traces of the ISI convergence for the
three algorithms obtained with same convergence speed for
16-QAM signaling. It can be observed that SCS-MMA-I out-
performs both RCA and CMA by achieving the lowest resid-
ual IST floor. Fig. 6 and Fig. 7 depict the traces of the symbol-
error rate (SER) for RCA and SCS-MMA-I for SNR equal to
20dB and 30dB, respectively, for 64-QAM signaling obtained
from 50 independent simulation runs. It can be observed that
SCS-MMA-I performed better than RCA by achieving lower,
faster and less dispersive SER in both two cases. Our simu-
lations show that the new algorithm, SCS-MMA-I, results in
performance enhancement in convergence speed with lower
SER and residual ISI, irrespective of constellation size, than
those of RCA and CMA. Future investigation will focus on
the modification of normalization factor and the use of multi-
ple constraints.

5. CONCLUSION

In this work we devised a new blind equalization algorithm by
using the minimum disturbance principle with relaxation. The
proposed algorithm is able to correct the phase error and re-
moves the ISI simultaneously while maintaining the simplic-
ity. With the help of computer simulations, we have shown
that SCS-MMA-I results in performance improvement in con-
vergence speed and residual ISI than those of RCA and CMA.
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Table 1. Closed form expressions for Rs.

Scheme Square QAM Symmetric QAM
. 2M—2 31M—32 [ 2
RCA: Rgca 3vV M 66 M
SCS-MMA-L: Rscsnax | 4M (%j) : 1%5M (83911\1/\[/1113726)
b2 14M —26 3251 M2 —9920M 46656
CMA: Reyy 15 120(31 M —32)

Table 2. Values of Rs for some QAM constellation.

M 4 16 32 64 128 256
Ryca 1 2.5 3.636 5.25 7.455 10.625
Rscs_mma_t 1 2.8 4.175 | 5.905 | 8.549 11.953
Rgm 1 13.2 26.2 58 110.1 237.2
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Fig. 3. Rotator phase estimation in CMA.
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Fig. 4. Signal constellation of 16-QAM (a) Unequalized,
(b) CMA, (c) RCA, and (d) SCS-MMA-I. The step-sizes are
8.0x107%,4.0x107* and 5.0 x 10~° for RCA, SCS-MMA-I
and CMA, respectively.
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Fig. 5. Ensemble average ISI for 16-QAM. p = 8.0 x 10~*
for RCA, p = 4.0 x 10~—* for SCS-MMA-I and pw =50 x
10~° for CMA.
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Fig. 6. Ensemble average SER for 64-QAM, SNR = 20dB.
p=8.0x1075 forRCA and p = 2.0 x 10~? for SCS-MMA.-
1. SCS-MMA-I is not only less dispersive but its steady-state
SER is less than that of RCA by 10 units.
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Fig. 7. Ensemble average SER for 64-QAM, SNR=30dB. All
parameters are same as those in Fig. 6.
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