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ABSTRACT

This paper presents an analysis of the kurtosis performance sur-
face as applied to linear estimation. The analysis concentrates on
a modified kurtosis (MK) function used in implementations of the
Least Mean Kurtosis (LMK) adaptive algorithm. The MK function
is shown to make the LMK algorithm applicable even for Gaussian
inputs. The minimum of the MK function is derived and shown to
be unique and to correspond to the Wiener solution of the mean
square error (MSE) estimation problem. A quantitative compari-
son of the MSE and MK functions explains why the LMK adaptive
algorithm is faster than MSE-based algorithms during the initial
learning phase, becoming slower as it approaches steady-state.

1. INTRODUCTION

Linear estimation is applied to a wide range of adaptive signal
processing and adaptive control problems [1, 2]. The design of
optimal adaptive systems requires detailed knowledge of both the
underlying theoretical problem and the properties of the adaptive
algorithm employed. This knowledge is usually acquired from the
analysis of the system behavior, including the derivation of analyt-
ical models to predict the performance of the adaptive algorithm
when applied to the system.

The analysis of the adaptive algorithm includes the prediction
of the adaptive weight vector behavior during the learning period
and in steady-state. Steady-state efficiency is then studied by com-
paring the mean converged weight vector with the stationary points
of the performance surface. Hence, evaluation of the adaptive al-
gorithm requires the knowledge of the performance surface prop-
erties. In addition, adaptive algorithms can be based on different
performance surfaces. Thus, addressing the relative performances
of two such algorithms requires the understanding of the relation-
ships between the two surfaces.

The performance surface most employed in linear estimation
is the mean square error (MSE). Usually, the MSE presents a sec-
ond order dependence on the adaptive filter weights, has one global
minimum and is mathematically manageable. Recent results, how-
ever, have shown that cost functions based on higher order mo-
ments (larger than 2) of the estimation error, can lead to adap-
tive algorithms that outperform MSE-based algorithms in impor-
tant situations. One of these cost functions is based on the kurtosis
of the estimation error [2]. Recursive minimization of this cost
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function using a stochastic approximation for its gradient leads to
the Least Mean Kurtosis (LMK) adaptive algorithm [3, 4].

The LMK algorithm seeks to minimize an approximation for
the negative of the error signal kurtosis. It belongs to the family
of stochastic gradient algorithms [4, 5]. The kurtosis is related
to the fourth order cumulant of the error signal. Cumulants of
order greater than two are equal to zero for zero-mean Gaussian
processes. Thus, a true kurtosis-based cost function would make
estimation ineffective for Gaussian inputs. However, practical im-
plementation issues require approximations on the true kurtosis
expression. These approximations, which can be recursive [4] or
non-recursive [3], introduce changes in the true kurtosis that end
up improving the performance of the resulting algorithm, when
compared to MSE-based algorithms, even for Gaussian signals [3].
In fact, previous results show that the LMK algorithm can outper-
form the LMS algorithm for Gaussian inputs and several noise dis-
tributions [3, 4, 6], including the Gaussian. This superior transient
performance when compared to LMS has raised considerable at-
tention to the LMK algorithm. However, little is known about its
peformance surface, either on its own right or as compared to the
MSE surface.

This paper derives important properties of the kurtosis per-
formance surface. The expression for the modified cost function
used to implement the LMK algorithm is derived as a function
of the input and noise statistics. The minimum of the modified
performance surface is determined and shown to be unique. It is
also shown that this minimum corresponds to the minimum of the
MSE performance surface (the Wiener solution). Analysis of these
properties explains why the LMK algorithm converges faster than
LMS during the initial learning phase and slower than LMS as it
approaches steady-state.

2. THE LINEAR ESTIMATION PROBLEM

Figure 1 shows the linear estimation problem studied, where:

−

+x(n) y(n)

d(n)

e(n)
W

Fig. 1. The linear estimation problem.
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• x(n): input signal, stationary, Gaussian, zero-mean and
with variance σ2

x;

• d(n): desired signal;

• y(n): filter output;

• e(n): estimation error;

• W = [w1, w2, ..., wN ]T : filter weigths.

It is assumed that the desired signal d(n) can be modeled as

d(n) = W oT

X(n) + z(n) (1)

where W 0 = [w0
1 , w0

2 , ..., w0
N ]T is a constant vector, X(n) =

[x(n), x(n − 1), ..., x(n − N + 1)]T is the observed data vector,

z(n) represents the modeling errors in d(n) = W oT

X(n). z(n)
is assumed stationary, white, statistically independent of any other
signal and with an even pdf (fz(z) = fz(−z)).

3. PERFORMANCE SURFACES

The kurtosis of the zero-mean estimation error is given by

Cum4[e(n)] = E[e4(n)] − 3E2[e2(n)] (2)

where Cum4 means fourth order cumulant. The cost function
JLMK used with the LMK algorithm is defined as the negative
of the fourth order cumulant [4], [6]:

JLMK = 3E2[e2(n)] − E[e4(n)]. (3)

The gradient of JLMK with respect to the weight vector is
given by

∇JLMK =
∂JLMK

∂W
= 6E[e2(n)]

∂E[e2(n)]

∂W
− ∂E[e4(n)]

∂W
.

(4)
Using a stochastic approximation for the above gradient1, the

estimated gradient is given by

b∇JLMK(n) =

j
6E[e2(n)]

∂e2(n)

∂W
− ∂e4(n)

∂W

ff
=

j
12E[e2(n)]e(n) − 4e3(n)

ff
∂e(n)

∂W

= −4
n

3E[e2(n)]e(n) − e3(n)
o

X(n)

(5)

where ∂e(n)/∂W = −X(n).
For real-time implementation, E[e2(n)] in (5) has to be esti-

mated. This can be done using the recursion [4]

E[e2(n)] = βE[e2(n − 1)] + e2(n), 0 < β < 1 (6)

with E[e2(−1)] = 0. Using the first three terms of the solution of
(6) leads to a non-recursive estimation that is accurate for small β:

E[e2(n)] ≈ e2(n) + βe2(n − 1) + β2e2(n − 2). (7)

Note that (7) is a good approximation to E[e2(n)] only for
very small values of β. Nevertheless, it has been used for any 0 <
β < 1 [3]–[7]. This and the stochastic gradient approximation lead

1Substituting ∂e2(n)
∂W

and ∂e4(n)
∂W

for ∂E[e2(n)]
∂W

and ∂E[e4(n)]
∂W

, re-
spectively.

to an algorithm that operates on a modified kurtosis surface, which
is quite different from (3). The detailed analysis of the resulting
algorithm’s performance as a function of β is beyond the scope of
this work.

Substituting (7) in (5) yields an expression for the estimated
gradient of the now modified performance surface:

b∇ĴLMK(n) = − 8e3(n)X(n) − 12βe2(n − 1)e(n)X(n)

− 12β2e2(n − 2)e(n)X(n).
(8)

Using (8), the weight update equation for the LMK adaptive
algorithm becomes

W (n + 1) = W (n) − µlmk
b∇ĴLMK(n)

= W (n) + µlmk{2e2(n) + 3βe2(n − 1) + 3β2e2(n − 2)}
× e(n)X(n)

(9)

where µlmk absorbed a multiplicative factor of 4 from (8). Note
that (8) and (9) can now be easily implemented using the available
instantaneous signals. However, (8) is the gradient of a modified
cost function ĴLMK whose properties are unknown.

3.1. The Modified Performance Surface

From Fig. 1, e(n) = d(n) − XT (n)W and (8) can be written as

b∇ĴLMK(n) =

j
8e3(n) + 12βe2(n − 1)e(n)

+ 12β2e2(n − 2)e(n)

ff
∂e(n)

∂W
.

(10)

Integrating (10) and replacing e2(n) and e4(n) by their ex-
pected values, yields

ĴLMK = 2E[e4(n)] + 6βE[e2(n − 1)]E[e2(n)]

+ 6β2E[e2(n − 2)]E[e2(n)].
(11)

If x(n) and z(n) are stationary, e(n) is also stationary2 and
thus E[e2(n− 2)] = E[e2(n− 1)] = E[e2(n)]. Therefore, defin-
ing the weight error vector V = W − W o and using e(n) =
z(n) − XT (n)V , (11) can be written as

ĴLMK = 2E[e4(n)] + 6(β + β2)E2[e(n)]

= 6(1 + β + β2)
n
2σ2

zV T RV + V T RV V T RV
o

+ 2E[z4(n)] + 6(β + β2)σ4
z

(12)

where σ2
z = E[z2(n)] and R = E[X(n)XT (n)].

Eq. (12) is a good approximation of the actual performance
surface whose gradient is given by (8). The results in [3] show
that the LMK adaptive algorithm derived from (8) converges faster
than LMS during the learning phase and slower than LMS as it
approaches steady-state for Gaussian input. For β = 0, the Least
Mean Fourth (LMF) adaptive algorithm is obtained [7]. In the next
sections we derive the properties of the performance surfaces given
by (3) and (12).

2W and W o are constants.
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4. PROPERTIES OF THE TRUE KURTOSIS
PERFORMANCE SURFACE (JLMK )

For comparison purposes, we first study the properties of the true
kurtosis performance surface (3) for a Gaussian input signal x(n).
With V = W − W o and using e(n) = z(n) − XT (n)V in (3),
the expression for the true kurtosis performance surface becomes

JLMK = 3E2[(z(n) − XT (n)V )2] − E[(z(n) − XT (n)V )4].
(13)

Using the same methodology used in [3, 7], it can be shown
that:

E2[(z(n) − XT (n)V )2] = σ4
z + 2σ2

zV T RV

+ V T RV V T RV
(14)

and

E[(z(n) − XT (n)V )4] = 3V T RV V T RV

+ 6σ2
zV T RV + E[z4(n)].

(15)

Substituting (14) and (15) in (13), yields

JLMK = 3σ4
z − E[z4(n)]. (16)

The r.h.s. of (16) is constant and equal to the negative of
Cum4[z(n)]. Its gradient with respect to V is equal to zero, which
shows that the kurtosis performance surface is useless for estima-
tion problems with Gaussian input signals.

5. PROPERTIES OF THE MODIFIED PERFORMANCE
SURFACE (ĴLMK )

5.1. Stationary Points of ĴLMK

The gradient of (12) with respect to V is easily determined to be

∂ĴLMK

∂V
= 24(1 + β + β2)

n
σ2

z + V T RV
o

RV (17)

and the stationary points are the solutions of ∂ĴLMK/∂V = 0.
Since R is positive semidefinite [1], V T RV ≥ 0. Thus, the

solution of ∂ĴLMK/∂V = 0 is V = 0 and the stationary point
of ĴLMK corresponds to W = W o, which is exactly the Wiener
solution of the linear minimum MSE problem.

To show that V = 0 is a minimum, we must study the proper-
ties of the Hessian matrix. The Hessian matrix of ĴLMK at V = 0
is given by

H
˛̨̨
V =0

=
∂2ĴLMK

∂V 2

˛̨̨̨
V =0

=
∂

∂V

j
∂ĴLMK

∂V

ff˛̨̨̨
V =0

=
∂

∂V

j
24(1 + β + β2)σ2

zRV

ff˛̨̨̨
V =0

+
∂

∂V

j
24(1 + β + β2)V T RV RV

ff˛̨̨̨
V =0

= 24(1 + β + β2)σ2
zR

(18)

which is positive definite if R is assumed positive definite, a rea-
sonable assumption in most practical applications [1]. In this case,

W = W o is the point of minimum of ĴLMK . Substituting V = 0
in (12) yields

ĴLMKmin = 2E[z4(n)] + 6(β + β2)σ4
z (19)

which differs from (16) by 3E[z4(n)]+3(2β2+2β−1)σ4
z . This is

a consequence of the modifications introduced in the true kurtosis
performance surface JLMK to allow a practical implementation of
the LMK algorithm.

5.2. MSE Obtained from ĴLMK

Performance comparisons among different adaptive algorithms re-
quire the use of a common figure of merit. The most used figure
of merit is the MSE. It provides a physical interpretation of the re-
sults as error power and is used as cost function in deriving several
adaptive filtering algorithms.

The performance surface of the MSE is given by [1]

ξ = σ2
z + V T RV. (20)

From (12), V T RV can be written asn
V T RV

o2

+ 2σ2
z

n
V T RV

o
+

2E[z4(n)] + 6(β + β2)σ4
z − ĴLMK

6(1 + β + β2)
= 0.

(21)

Considering only the positive solution of (21) (R positive def-
inite) and substituting it in (20), leads to a direct relationship be-
tween the MSE and ĴLMK :

ξ = f(ĴLMK) = σ2
z + V T RV

=
1

2

s
4{3σ4

z − E[z4(n)]} + 2ĴLMK

3(1 + β + β2)
.

(22)

Substituting (19) in (22) yields ξ(ĴLMKmin) = σ2
z , which

confirms the result that the minima of both surfaces correspond
to the Wiener solution W = W o. This expression also provides
a way to compare the convergence rates of adaptive algorithms
derived from these two surfaces.

5.3. Comparison of Convergence Rates

To compare the convergence ratios of adaptive algorithms based
on the MSE and on the ĴLMK surfaces, we write the square of
(22) as

4ξ2 =
12σ4

z − 4E[z4(n)] + 2ĴLMK

C
(23)

where C = 3(1 + β + β2) ≥ 3 for β ≥ 0.
Taking the derivatives of both sides of (23) with respect to V

and considering their magnitudes,˛̨̨
∂ĴLMK

∂V

˛̨̨
˛̨

∂ξ
∂V

˛̨ = 4C ξ. (24)

Analysis of (24) shows that the relationship between ∂ĴLMK/∂V
and ∂ξ/∂V can be classified into two distinct regions. These re-
gions are related to the convergence speed of the LMK and LMS
adaptive algorithms, respectively:
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a) During the transient phase, when ξ is large (ξ ≥ 1
4C

),˛̨̨̨
˛∂ĴLMK

∂V

˛̨̨̨
˛ ≥

˛̨̨̨
˛ ∂ξ

∂V

˛̨̨̨
˛ (25)

and thus the LMK algorithm converges faster than the LMS
algorithm.

b) Close to steady-state, when ξ is small (ξ < 1
4C

),˛̨̨̨
˛∂ĴLMK

∂V

˛̨̨̨
˛ <

˛̨̨̨
˛ ∂ξ

∂V

˛̨̨̨
˛ (26)

and thus LMK converges slower than LMS.
The quantitative measure of the difference in convergence rates

just derived agrees with a qualitative analysis of the weight updat-
ing equations of the two algorithms. The weight updating equa-
tions for the LMS [1] and LMK [3] algorithms are given by

Vlms(n + 1) = Vlms(n) + µlmse(n)X(n) (27)

and

Vlmk(n + 1) = Vlmk(n)

+ µlmk{2e2(n) + 3βe2(n − 1) + 3β2e2(n − 2)}e(n)X(n).

(28)

Thus, the LMK algorithm can be interpreted as an LMS algo-
rithm with variable step size given by,

µlms(n) = µlmk{2e2(n)+3βe2(n−1)+3β2e2(n−2)}. (29)

The convergence rate and the misadjustment of the LMS al-
gorithm are proportional to the step size [1, 2]. Thus, (29) shows
a large step size when e(n) is large. As e(n) converges towards
its steady-state condition, the step size is reduced. The relative
behavior of both algorithms in a system identification problem is
illustrated in Fig. 2 (average of 50 realizations), which was ob-
tained for W o = [0.1085 0.2169 0.3254 0.4339 0.5423 0.4339

0.3254 0.2169 0.1085], W oT

W o = 1, W (0) = 0, β = 0.5.
The input signal applied to the system to estimate W o was an
AR(1) process generated as x(n) = 0.5x(n − 1) + g(n) where
g(n) is white Gaussian with unit variance. Two different addi-
tive noise distributions were considered: Gaussian and sinusoidal,
the latter expressed as z(n) =

√
2σ2

z sin(377n + φ) with φ uni-
formly distributed in [−π, π]. In both cases σ2

z = 0.1. The
step sizes were adjusted for equal steady-state MSE in all cases.
µLMS = 0.000215, µLMK = 0.000180 for Gaussian noise and
µLMK = 0.000586 for sinusoidal noise. Since the LMS MSE is
not affected by the noise distribution, only one curve is shown for
the LMS algorithm.

6. CONCLUSION

This paper studied the properties of the performance surface of the
linear estimation problem with cost function based on the kurtosis
of error. The analysis is concentrated on a modified performance
surface used in actual implementations of the LMK adaptive algo-
rithm. It was shown that this modified kurtosis performance sur-
face has a global minimum that corresponds to the Wiener solution
of the MSE surface. A comparative analysis between the MSE and
the modified kurtosis cost functions has shown why the LMK algo-
rithm outperforms the LMS algorithm during the transient phase,
but has slower convergence as it approaches steady-state.
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Fig. 2. Relative behavior of the LMK and LMS algorithms.
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