
LINKING SEQUENCE BEHAVIOR IN ANC

 A. A. (Louis) Beex & James R. Zeidler 

 DSPRL – ECE 0111 ECE  

 Virginia Tech University of California, San Diego 

 Blacksburg, VA 24061-0111, USA La Jolla, CA 92093-0407, USA  

ABSTRACT 

It has been known for some time that adaptive filters can 

sometimes provide performance exceeding that of a Wiener filter 

in cases where there is a difference in frequency between the 

reference signal and the primary of an adaptive noise canceller. A 

recent model to explain this behavior was based on the concept 

of linking sequences. In this paper the characteristics of these 

linking sequences will be evaluated further. It will be shown that 

performance improvement of the adaptive filter is paired with 

low variation of the linking sequences. 

1. INTRODUCTION 

Non-Wiener behavior has been observed to occur in adaptive 

filtering, in particular when narrowband signals are involved [1]. 

The behavior has been termed non-linear, or non-Wiener, as the 

performance of the adaptive filter is better than that produced by 

the time-invariant Wiener filter – of the same structure, for the 

wide-sense stationary scenario at hand – and also because the 

adaptive filter weights behave in a time-varying manner.  

We have offered an explanation for such effects, concentrating 

on the normalized least-mean-square (NLMS) algorithm [2]. The 

explanation centered on replacing the auxiliary channel signals of 

the optimal time-invariant two-channel Wiener filter with linear 

combinations of the usual reference signals, using the linking 

sequences. The latter provide a sample-by-sample link between 

the auxiliary signals and any of the particular reference inputs.  

Here we explore the linking sequence behavior itself, with the 

idea of connecting enhanced adaptive filter performance with 

specific linking sequence characteristics.  

The paper is organized as follows. Section 2 reviews the 

adaptive noise canceling (ANC) setup, the NLMS algorithm, and 

some of its properties and relevant interpretations. Section 3 

reviews the linking sequence concept, connecting the optimal 

two-channel Wiener filter with the target of NLMS adaptation. 

Section 4 looks at the behavior of the linking sequences in the 

ANC application, under different signal-to-noise ratio (SNR) 

conditions. A summary is provided in Section 5. 

2. NLMS-ANC SETUP 

An important application of adaptive filtering is in adaptive 

noise, or interference, canceling (ANC). The desired or primary 

signal nd  contains narrowband noise or interference, which we 

desire to mitigate using a filtered version of the reference signal 

nr , in the form of a linear combination of nr  and some of its 

delayed versions. The usual assumption is that reference and 

interference are correlated. We therefore assume the signal 

generator structure in Fig. 1 for our later simulations. 
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Fig. 1 Signal Generation.

Considering the jointly wide-sense stationary Gaussian process 

,n nd r , the optimal (minimum mean square error) causal 

estimate of nd  is given by a linear operation on the causal past of 

1,n nd r . Both the Wiener and the NLMS filtering operations 

are represented in the two-channel filtering structure in Fig. 2, 

with the auxiliary channel signal nx  defined as 1nd .
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Fig. 2 Two-Channel Filtering.
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Note that in the usual ANC implementation a single-channel 

filter is used, with the auxiliary channel signal nx  – for all 

practical purposes – set to zero. To simultaneously cover the 

single-channel case and the two-channel case, we define the 

reference vector input to the NLMS algorithm as follows: 
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The NLMS adaptation algorithm is the usual one. 
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When the model for the estimate of the desired signal ˆ
nd  – used 

in adaptation, as expressed by the first line of (2) – is the same as 

the structure of the desired signal nd , i.e.  

H

n o nd w u  (3)  

for some ideal weight vector ow , then the NLMS weight vector 

converges to the latter. The a posteriori errors will be zero and 

the weight vector increment norms will be zero. If some noise is 

present in (3), the NLMS weight vector converges to a 

neighborhood of ow . For small step-sizes the NLMS weight 

vector will be close to the best possible constant weight vector.  

3. LINKING SEQUENCE CONCEPT 

As indicated above, the optimal estimate for the desired 

signal 0ˆ
nd , with its corresponding optimal error n , allows us to 

express the desired signal as follows. 
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Using single-channel NLMS adaptation, mean-square error 

(MSE) has been observed to sometimes come close to its 

performance bound [3], i.e. the optimal two-channel MSE. For 

this to happen, the following single-channel NLMS model  

ˆ
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n r n n
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d e
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must be connected, or linked, to the inherent model or structure 

of the desired signal, as expressed in (4). The linking sequence 

concept was invented to facilitate writing (4) in the form of the 

model structure of (5), by expressing n mx  – elements of the 

auxiliary channel – in terms of n lr , elements of the reference 

channel. The linking sequences were defined as follows [2,4]. 
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 (6) 

Note that an element of nx  can be written in terms of any 

element of nr  this way, and that an affine combination (all l

summing to 1) of these possibilities is equally valid. This leads to 

the following equivalent of (4), 
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where 1l1 is a zero-vector except for its (l+1)st element of 1.  

 Non-Wiener effects have been observed at large step-size, 

for example 1 , where adaptation is fastest. For the latter, the 

a posteriori error equals zero [5], i.e. 

1

H

n n nd w r  (8) 

The latter suggests that the term in parentheses in (7) represents 

the general form of 1nw , i.e. the manifold of a posteriori NLMS 

weight vectors from which that vector is selected which 

minimizes the norm of the weight vector increment [5]. The 

conditions for the latter interpretation to hold are that (4) 

represents the optimal two-channel solution, i.e. the number of 

taps in the auxiliary and reference channels is sufficiently high, 

and that the minimum mean square error approaches zero. For 

the first scenario in Section 4 both conditions are met. 

Considering that the NLMS adaptation mechanism picks the 

appropriate affine combination, we see that the behavior of the a

posteriori weight vector is determined by the behavior of the 

linking sequences. Generally, by their definition in (6), the 

linking sequences are time-varying.  

4. ANC LINKING SEQUENCE BEHAVIOR 

The signal generation process uses AR(1) (first order 

autoregressive) filters driven by the same white noise. The poles 

are
3

0.99exp( )dp j  and 2
3 20

0.99exp{ ( )}rp j . We add 

white noise to the AR(1) outputs so that the desired signal-to-

noise (SNR) ratios result. In our examples SNRd=SNRr, for 

simplicity’s sake, and – to emphasize non-linear effects – a step-

size of 1  is used throughout. 

For our first case SNR equals 80 dB. It can be shown that in 

this case, the optimal filter in (4) is reached with one tap ( 1M )

in the auxiliary channel, i.e. 1n ndx , and two taps ( 2L ) in 

the reference channel. With these choices, the expression in (7) 

becomes relatively simple, using only two linking sequences. 

Fig. 3 shows the error performance of the adaptive filter AF(0,2), 

using zero auxiliary taps and two reference taps, in comparison 

with the optimal time-invariant Wiener filter WF(0,2) of the 

same structure. We observe that the adaptive filter on an almost 

sample-by-sample basis produces smaller errors than its optimal 

time-invariant counter part. Fig. 4 shows the corresponding 

weight behavior (real part shown, imaginary part behaves 

similarly), which exhibits the pseudo- periodic nature (period 20) 

reflected in the time-varying weights of (7) [2]. Figs. 5 and 6 

show the behavior of the magnitude and phase, respectively, of 

the sample to sample change in the two linking sequences. We 

observe that the largest performance improvement coincides with 

relatively small changes in the linking sequence differences, i.e. 

their magnitudes and phases are about the same from sample to 

sample. We further observe that the phase difference is relatively 

constant, small, and non-zero. These characteristics are 

responsible for the pseudo-periodic weight behavior. For SNR 

down to 20 dB the results are similar. At SNR equal to 10 dB 

deterioration sets in, as shown in Figs. 7 through 10. 
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Fig. 3 ANC Performance Comparison for SNR=80 dB. 
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Fig. 4 ANC Re(weight) Behavior for SNR=80 dB. 
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Fig. 5 Magnitude Linking Difference for SNR=80 dB. 
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Fig. 6 Phase Linking Difference for SNR=80 dB. 
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Fig. 7 ANC Performance Comparison for SNR=10 dB. 
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Fig. 8 ANC Re(weight) Behavior for SNR=10 dB. 
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Fig. 9 Magnitude Linking Difference for SNR=10 dB. 
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Fig. 10 Phase Linking Difference for SNR=10 dB. 
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At SNR equal to 10 dB there is – at times – still performance 

improvement of AF(0,2) over WF(0,2). There is also still semi-

periodic weight behavior during the interval of most significant 

improvement. However, the variation in the linking sequences 

has increased substantially. The latter is clearly observed in the 

phase of the linking sequence differences. The interval over 

which the variational behavior is most prominent corresponds 

directly to the interval where performance is reduced and semi-

periodic time-varying weight behavior has vanished.  

Lowering SNR to 0 dB leads to performance of the optimal 

time-invariant filter being better than that of the adaptive filter 

for almost any interval. Semi-periodic behavior of the weights is 

observed during rare and short intervals only, as seen in Fig. 11 

around iteration index 4910.  
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Fig. 11 ANC Re(weight) Behavior for SNR=0 dB. 

The linking sequences become more random and highly 

variational, in particular with respect to their changes in phase 

from sample to sample, as shown in Fig. 12.
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Fig. 12 Phase Linking Difference for SNR=0 dB. 

Note from (7) that the desired signal consists of a component 

that can be linked to the reference input and a component 

consisting of noise. In the above examples we went from the 

reference-linked component being dominant and slowly varying 

to the noise component being comparable in strength together 

with a much quicker varying reference-linked component. Recall 

that the manifold determines the a posteriori weight vector, and 

that NLMS incurs a lag error. Under noisier and quicker varying 

conditions the lag error becomes relatively large. 

In the final example we return to SNR of 80 dB, but now we 

set the pole radii to 0.7, i.e. the AR(1) processes are now 

wideband rather than narrowband. As in the previous case, here 

too the optimal WF(0,2) performs better than the AF(0,2). Fig. 

13 shows that the linking sequences change phase rather rapidly. 

The error component affecting the manifold is rather small here. 
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Fig. 13 Phase Linking Difference for SNR=80 dB 

Wideband AR(1) Processes. 

The performance of the theoretical Wiener filters for the 

above cases is given in Table 1. 

Table 1 Theoretical Wiener Filter Performance. 

 NARROW WIDE 

SNR dB 80 10 0 80 

MMSE (1,2) 1.9910-6 10.41 75.83 5.8410-8

MMSE (0,2) 49.05 54.99 100.36 0.1496 

For the 10 dB narrowband case AF(0,2) improved over WF(0,2), 

while for the 80 dB wideband case no advantage was realized. 

The difference lies in the variability of the linking sequences. 

5. SUMMARY 

We investigated the behavior of the linking sequences defined 

earlier to explain the occurrence of non-Wiener effects in 

adaptive NLMS filtering. These experiments show that in the 

adaptive noise canceling application the occurrence of non-

Wiener effects is paired with relatively constant behavior of the 

linking sequences, which happens for narrowband processes. 
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