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ABSTRACT

The tap-length is an important structural parameter of the
linear FIR adaptive filter. Although the optimum tap-length
that balances the performance and complexity varies with
scenarios, most current adaptive filters fix the tap-length at
some compromise value, making them inefficient to imple-
ment especially in time varying scenarios. In this paper, we
propose a novel gradient search based variable tap-length
algorithm using the concept of the pseudo fractional tap-
length, and show that the new algorithm can converge to
the optimum tap-length in the mean. Results of computer
simulations are also provided to verify the analysis in this
paper.

1. INTRODUCTION

In linear adaptive filters, the tap-length, or the number of the
taps, is an important parameter that significantly influences
the performance of the adaptive filter. On the one hand,
the tap-length needs to be long enough to ensure good per-
formance since the minimum mean squared error (MMSE)
is a monotonic non-increasing function of the tap-length.
On the other hand, the tap-length can not be too long as it
otherwise increases the adaptation noise. Moreover, even
without the adaption noise, it is still not suitable to have an
unnecessarily long filter in view of complexity, since the im-
provement of the MMSE performance due to the tap-length
increase always becomes trivial when the tap-length is long
enough. Therefore, there exists an optimum tap-length that
balances the conflicting requirements of performance and
complexity. In most adaptive filters, however, the tap-length
is usually fixed at some compromise value determined by
observation of typical scenarios, implying that often the fil-
ter is too long and sometimes inadequate for the severity of
conditions.

There are several variable tap-length algorithms avail-
able in the literature. Most of them (e.g [1, 2, 3]), however,
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target more at improving the convergence rate of the LMS
algorithm than at searching for the optimum tap-length. A
more relevant work is a recent paper by Riera-Palou et al.
[4], in which the original TDL structure of an FIR equal-
izer is partitioned into several segments and the tap-length
can be adjusted by one segment being added to, or removed
from, the filter according to the difference of the output er-
ror levels from the last two segments. The idea is that if the
tap-length is long enough, the last two segments have sim-
ilar levels of the output error. However, because the differ-
ence of the instantaneous output error levels from the last
two segments may not always reflect the difference of the
MMSE with equivalent tap-lengths, this method does not
always converge to the optimum tap-length. Moreover, the
key parameters such as the number of the segments must
be carefully chosen for different applications, making the
algorithm inflexible in application.

In this paper, we will propose a novel variable tap-length
algorithm using a gradient search method with instantaneous
inputs. The proposed algorithm is based on the observa-
tion that though the MSE cost function with respect to the
tap-length is difficult, if not impossible, to obtain, the rela-
tionship between the MSE and tap-length can be revealed
in an ad-hoc manner since the tap-length is only a one di-
mensional parameter. Moreover, although the tap-length
must be an integer, we can apply the concept of the pseudo
fractional tap-length to make instantaneous length adaption
possible, where the true tap-length is the integer part of the
fractional tap-length.

2. OPTIMUM TAP-LENGTH

This section gives definitions of the optimum and subopti-
mum tap-lengths for an FIR adaptive filter.

It is well known, e.g. [5], that the converged MSE to
which the LMS algorithm converges is given by:

ξN (∞) = ξN, opt + ξN, excess, (1)

where ξN, opt is the MMSE, ξN, excess is the excess MSE
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which is defined as:

ξN, excess = MN · ξN, opt, (2)

where MN is the misadjustment, and the subscript N de-
notes the parameters relating to the filter with tap-length N .

For better convergence behavior, many applications use
the normalized-LMS which has been shown to have a con-
stant level of misadjustment under different scenarios [6, 7].
Then its ξN (∞) and ξN, opt only differ by a factor of con-
stant level. Further considering that ξN, opt is a monotonic
non-increasing function of N , we have that as N increases,
ξN (∞) keeps decreasing until either it starts to increase or
the decrease becomes negligible no matter how large N in-
creases. With this observation, we have the following defi-
nitions.

Definition 1 If defining ∆N = ξN (∞) − ξN+1(∞) as the
decrease of the converged MSE when the tap-length is in-
creased from N to N +1, then the “optimum tap-length” is
the smallest No that satisfies:

∆N � E for all N � No, (3)

where E is a predetermined value according to the system
requirements, N and No are positive integers. �

∆N is basically the gradient of the function of the con-
verged MSE with respect to the tap-length at N and it may
be negative due to the adaptation noise. E is usually a small
positive number. In many scenarios we may have a subop-
timum tap-length which is defined in Definition 2.

Definition 2 If a positive integer M satisfies M < No and:

∆M � E , (4)

then the “suboptimum tap-length” is M , where No and E
are defined in Definition 1. If a group of concatenated inte-
gers M,M + 1, · · · ,M + L − 1, but neither M − 1 nor
M + L, are all suboptimum tap-lengths, then the set of
M, · · · ,M + L − 1 is called one “suboptimum tap-length
set”, and L + 1 is called the “length”of the suboptimum
tap-length set.

During the next section, we will derive a novel variable
tap-length algorithm that can find No adaptively.

3. TAP-LENGTH ADAPTATION

In applications, ξN (∞) is usually not available and can be
obtained by the exponential average as:

ξ̄(i) = λξ̄(i − 1) + (1 − λ)e2(i), (5)

where λ is a forgetting factor which is set close to one.

Defining nf as the pseudo tap-length which can take
fractional values, we have the following adaptation rule:

nf (i + 1) = (nf (i) − α) + β · [ξ̄p − ξ̄(i)
]
, (6)

where the true tap-length N(i) = �nf (i)�, �.� truncates the
embraced value to the nearest integer, ξ̄p is the estimated
converged MSE for the previous tap-length N(i − 1), ξ̄(i)
is obtained by (5), β is the step-size for nf (i) adaptation
and α is called a leaky factor which is used to prevent nf (i)
from increasing to an undesirably large value.

Initially we set α � β, ξ̄p = P and N(0) = nf (0) =
Ns, where P > ξN (∞) for all N , and Ns < No (e.g.
Ns = 1). Then nf (i) starts to increase from Ns. At the
so-called changing time that |nf (i) − N(i)| � 1, we let
ξ̄p = ξ̄(i) and append one zero-tap to the current filter. At
non-changing time, both ξ̄p and N(i) remain unchanged.

Starting at one changing time, the filter converges to-
wards the MMSE corresponding to the new tap-length. If
β is small enough and α � β, we can have E[ξ̄(i)] =
ξ�nf (i)�(∞) before the next changing time. Then taking ex-
pectations on both sides of (6) gives:

E[nf (i+1)] = (E[nf (i)]−α)+β·
[
ξ�nf (i)�−1(∞) − ξ�nf (i)�(∞)

]
,

(7)
where i corresponds to the converged periods of the adap-
tive filter. It is clear from (7) that E[nf (i)] keeps increasing
until (note N(i) = �nf (i)�):

ξN(i)−1(∞) − ξN(i)(∞) � α

β
. (8)

Obviously in (6), the tap-length can only be increased.
Similarly we can also construct the recursion to decrease the
tap-length which is given by:

nf (i + 1) = (nf (i) − α) − β · [ξ̄p − ξ̄(i)
]
, (9)

where the true tap-length N(i) = �nf (i)� + 1. Initially we
set α � β, nf (0) > No, and ξ̄p = P which is same as
that for (6). Then nf (i) starts to decrease from Nb. The
changing time is also defined as the time when |nf (i) −
N(i)| > 1, at which we let ξ̄p = ξ̄(i) and remove the last
tap from the adaptive filter. Similar to the analysis for (6),
we have that if β is small enough and α � β, E[nf (i)] keeps
decreasing until:

ξN(i)−1(∞) − ξN(i)(∞) >
α

β
. (10)

It is clear from (8) and (10) that if there are no sub-
optimum tap-lengths, both (6) and (9) can converge to the
optimum tap-length in the mean, where E in Definition 1 is
set to be α/β.

Some systems may have suboptimum tap lengths. For-
tunately, both (6) and (9) are adapted based on the instan-
taneous values of ξ̄(i), the variance of which can be re-
garded as random disturbance to the search procedure. If
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such disturbance is much larger than the variation of the
sub-optimum tap-lengthes, the search algorithm can escape
from the sub-optima. Or we may increase the adjusting
step-size of the tap-length, i.e. adjust N by the value of K
(K > 1) at every changing time. Then the tap-length adap-
tion converges to a value within [N0, No + K − 1] rather
than the exact value of No. This still satisfies the tap-length
requirement for most systems since they usually do not re-
quire a highly accurate value of the optimum tap-length.

Both (6) and (9) can only search for the tap-length in one
direction. Therefore unless β is very small which however
implies slow convergence rate, the search may fail due to
the inaccurate estimate of ξN (∞). However, noting that (6)
and (9) differ only by a sign factor, we can merge them into
one recursion. Then we have the basic adaptive tap-length
algorithm as shown below.

For every i=1,2,3, · · ·
ξ̄(i) = λξ̄(i − 1) + (1 − λ)e2(i)
nf (i + 1) = (nf (i) − α) + β γ

[
ξ̄p − ξ̄(i)

]
(11)

if |nf (i) − N(i)| � K
ξ̄p = ξ̄(i), N(i) = 〈nf (i)〉
∆N = N(i) − N(i − 1), γ = sign(∆N )
if ∆N > 0

Append ∆N zero-taps to w(i)
End
if ∆N < 0

Truncate the last |∆N | taps from w(i)
End

End
if |nf (i) − N(i)| < K N(i) = N(i − 1) End

In the above procedure, the true tap-length N(i) = 〈nf (i)〉,
where 〈.〉 rounds the embraced value to the nearest inte-
ger. K is the step-size for the tap-length adjustment. γ(i)
is called the direction factor, with which (6) and (9) are
merged into one recursive equation. Specifically, at the chang-
ing time i, if N(i) − N(i − 1) > 0, we have γ(i) = 1 and
(6) is actually applied, as otherwise we have γ(i) = −1 and
(9) is used.

Initially we may set N(0) = Ns which is a small in-
teger and γ0 = 1. Then the tap-length has a small value
at the beginning of the adaptation and increases to a larger
value later. This arrangement is obviously appropriate for
the convergence of the adaptive filter [2, 3].

In many applications, the power of the desired signal
is always normalized to one, implying that the MMSE is
usually smaller than one and is thus better represented in a
logarithmic scale than in a linear scale. Therefore the adap-
tation rule of (11) may be modified as:

nf (i+1) = (nf (i)−α)+β γ(i)
[
log ξ̄p − log ξ̄(i)

]
. (12)

And the initialization of ξ̄p can be set as 1.

4. NUMERICAL SIMULATIONS

In this section, we apply the proposed variable tap-length
algorithm to the application of adaptive system modelling
as shown in Fig. 1, where s(i) is white Gaussian signal
with variance one, H(z) = 0.35 + z−1 + 0.35z−2, η(i) is
white noise with SNR 20dB, the logarithm version of recur-
sion (12) is used for the tap-length adaptation. For compar-
ison, we investigate the scenarios when Wo(z) = W1(z)
and Wo(z) = W2(z) respectively, where:

W1(z) =
1 + 0.2z−8

1 − 0.7z−1
, W2(z) =

1
1 − 0.3z−1

. (13)

The impulse response of Wo(z) is not truncated, and thus
any special filter length has not been privileged.
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Fig. 1. Block diagram of the adaptive system modelling
simulation.

The curves of the converged MSE ξN (∞) with respect
to the tap-length N are shown in Fig. 2. The E defined in
Definition 1 is set as 0.04. Then when Wo(z) = W1(z), the
optimum tap-length No = 15, the suboptimum tap-length
set is (6, 7), and when Wo(z) = W2(z), No = 4 and no
sub-optima are present.
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Fig. 2. The curves of the converged MSE and ∆N with
respect to the tap-length.

Fig. 3 shows the learning curves of nf (i) with dif-
ferent initializations for one typical simulation run, where
Wo(z) = W1(z), β = 0.1, α = 0.004 so that α/β = E =
0.04, K = 2 (i.e. N is adjusted by two every time), and
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Fig. 3. The learning curves of nf (i) with different initial-
izations.

initially γ = 1 and ξ̄p = 1. It is clearly shown in Fig. 3 that
nf (i) converges to around the optimum tap-length for both
nf (0) = 3 and nf (0) = 20.

Because the transient behavior of the tap-vector adapta-
tion may initially drive nf (i) away from No, the initial set
up of the algorithm may significantly affect the convergence
behavior of nf (i) though it does not influence the final con-
vergence of nf (i). Therefore in Fig. 3, when nf (0) = 3
and γ = 1, we observe the “good” initialization that nf (i)
converges to around No in about 1, 500 symbols, and when
nf (0) = 20 and γ = 1, we observe the “bad” initializa-
tion that nf (i) converges after around 5, 000 symbols. This
problem maybe overcome by resetting the algorithm every
time the channel varies sharply, the detail of which is how-
ever beyond the scope of this paper and may left to future
study.

Fig. 4 (a) and (b) shows the learning curves of the MSE
and nf (i) in a time varying scenario respectively, where
Wo(z) = W1(z) when the numbers of transmitted symbols
i < 5000, and Wo(z) = W2(z) when i � 5000. Both learn-
ing curves are based on one simulation run, and Fig. 4 (a) is
obtained by averaging the MSE learning curve with a rect-
angular smoothing window of size 50. It is clearly shown
in Fig. 4 that the proposed algorithm successfully tracks the
channel variations.

5. CONCLUSIONS

This paper defines the optimum and suboptimum tap-lengths
for the FIR adaptive filter and proposes a novel gradient
search based variable tap-length algorithm using the con-
cept of fractional tap-length. We show that the proposed al-
gorithm can converge to the optimum tap-length in the mean
with low complexity, and provide computer simulation re-
sults to verify the analysis. Finally we point out that the
tap-length adaptation when used in the system modelling
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Fig. 4. Track the variation of Wo(z).

application can also be regarded as the channel order es-
timate, where the optimum tap-length is just the effective
channel order.
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