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ABSTRACT

Independent component analysis (ICA) has shown success
in the separation of sources in lots of applications. Almost
all of them assume that a set of recorded signals is the result
of a linear mixture of independent sources. Although ICA
methods were firstly designed to apply only to free-noise
signals, numerous methods have extended it to deal with
additive noise, using only higher order statistic. However,
in speckle environments signals the noise is multiplicative,
so the applicability of ICA is seriously reduced. This paper
proposes an ICA method for speckle signals, taking into ac-
count the multiplicative nature of the noise and improving
the results obtained by standard ICA methods.

1. INTRODUCTION

In the last years, blind source separation (BSS) by ICA has
been applied to signal processing problems as diverse as
speech enhancement,medical signal processing, image anal-
ysis, telecommunications, financial series, etc. The goal of
ICA is to find a linear transformation of a set of signals such
that the transformed data are as statistically independent as
possible. When the recorded signals x are a linear mixture
of independent sources s, i.e., x = As (which will be called
ICA model), ICA produces the inverse of the mixing ma-
trix A and the separation of the sources (column vectors are
noted with lower bold letters, while matrices are noted with
capital bold letters). In order to attain the separation, ICA
uses second- and higher-order statistics in different ways
[1][2] and [3], generalizing the second-order technique of
principal component analysis (PCA).

Speckle noise is a multiplicative noise that can appear
associated to different type of signals. One of the most im-
portant are the coherent images, as sonar, laser, ultrasound-
B and synthetic aperture radar (SAR) images. It is in this
last kind of images where ICA has been most applied in the
last years. In [4] [5] and [6], different ICA approaches de-
veloped in image processing and remote sensing have been
extended to SAR images, but all of them do the separation
supposing that the N -dimensional data x follow the ICA
model, possibly with additive noise. However, in speckle

signals, the appearance of speckle noise can be seen as a
multiplicative noise [7], so each component z i of an ob-
served N -dimensional data z can be expressed as z i = vixi,
where the vector x are the data without noise and the vec-
tor v are the speckle noises present in each component of
the data vector. Although the data without noise x can fol-
low an ICA model, the recorded data z will not due to the
presence of the speckle noise. In this paper we propose a
method to extract the mixing matrix from signals that fol-
low the ICA model contaminated with speckle noise. In the
section 2, the model of a speckle mixture of independent
sources is presented and its second- and third-order statistic
is studied. In the section 3, the structure of these statistics is
used to develop a new method that allows to obtain the mix-
ing matrix in speckle signals. The results of the proposed
method are compared with them of standard ICA methods
in the section 4. The paper finishes with the conclusions in
the section 5.

2. SPECKLE ICA MODEL

It is assumed that the signals follow the speckle ICA model,
where the underlying signal follow an ICA model and the
recorded signal is contaminated with speckle noise. This
can be expressed as:

zi = vixi, i = 1, . . . , N with x = As (1)

where the signals are real, s is the vector of independent
sources, the speckle noises v = [vi, . . . , vN ] are random
variables with one mean and mutually independent each
other and with the signals x [7], A is the N × N mixing
matrix (same number of sources and signals is assumed for
simplicity) and N is the number of signals.

The covariance between two signals zi and zj of z is
defined as:

σz
ij = E{(zi − µz

i )(zj − µz
j )} (2)

where µz
i is the mean of the signal zi and E{·} is the expec-

tation operator. This covariance is easily computed:

σz
ij = σx

ij + σv
i δij

(
σx

ij + µx
i µx

j

)
(3)

II - 8210-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



so σx
ij is the covariance between xi and xj , σv

i is the vari-
ance of vi and µx

i is the mean of xi. As the signals v have
one mean, it means µz

i = µx
i .

The third-order cumulants of the signals z i, zj and zk

can be computed as:

κz
ijk = κx

ijk +
⌊
σv

j δjk

(
κx

ijj + 2µx
j σx

ij

)⌋
+

κv
i δijk

(
κx

iii + 3µx
i σx

ii + (µx
i )3

)
(4)

where κx
ijk and κv

i are the third order cumulant of xi, xj

and xk and the skewness of vi, respectively, and �fijk� =
fijk + fjki + fkij . These statistical functions will be used
in the next section for developing a method to extract the
mixing matrix from a speckle ICA modelled signal.

3. SPECKLE ICA METHOD (SICA)

The aim of ICA is to find a linear transformation W of the
data x, so the outputs u = Wx are independents. If the data
follows an ICA model, the matrix obtained after applying
ICA, W, is the inverse of the mixing matrix, and the outputs
u are the originals sources s. But in the case of speckle ICA
model, if the inverse of the mixing matrix is applied over the
speckle data z, the output signals are not independent, so the
matrix obtained by ICA is not the inverse of the mixing ma-
trix and the outputs are not the original sources. However,
although it is not possible obtain the original sources by a
linear transformation of the speckle data z, it can be seen
that the outputs y = Bz, where B = A−1, are the original
sources plus an additive zero mean noise, which depends
on the level of speckle noise, the mixing matrix and its in-
verse and the original sources. Then, it is interesting obtain
the mixing matrix, not because of the information provided
by it, which is what is the aim in lots of ICA applications,
but because it allows us to obtain the original sources plus
a zero mean noise. In order to obtain the mixing matrix, the
speckle ICA method (SICA) will use some particular struc-
ture that the signals y have in their second- and third-order
statistic.

If the matrix B, which is called the unmixing matrix, is
the inverse of the mixing matrix, its outputs are y = Bz and
the covariance between yi and yj is:

σy
ij = σs

i δij +
∑

r

BirBjrλr (5)

with λi = σv
i

(
σx

ii + (µx
i )2

)
, σs

i the variance of the signal
si and the sum goes from 1 to N , as all the sums will do in
the sequel. Since it has been modelled x = As, the arbi-
trary scaling factor associated with ICA problems appears.
To avoid this indetermination that affects to the estimation
of B, in this paper the normalization is to take s such that
the variances are σs

i = 1, for all i = 1, . . . , N . With this

selection, the first term in (5) is simply Dirac’s delta. The
third-order cumulant of yi, yj and yk is:

κy
ijk = κs

i δijk +
∑

r

BirBjrBkrβr +

⌊∑
r

BjrBkrαri

⌋

(6)

with

βi = κv
i

(
κx

iii + 3µx
i σx

ii + (µx
i )3

)
αij = σv

i

(
Aij

2κs
j + 2Aijµ

x
i

)
and κs

i are the skewness of the signal si.
Given a set of speckle signals z, the SICA method will

consists in searching the unmixing matrix such that its out-
puts have a structure equal to the ones shown in (5) and (6).
In order to do this, the covariance and third-order cumulants
of y are estimated from those ones of z. More formally,

σ̂y
ij =

∑
lm

BilBjmσ̂z
lm

κ̂y
ijk =

∑
lmn

BilBjmBknκ̂z
lmn

(7)

where σ̂z
ij and κ̂z

ijk are the covariance and the third-order
cumulant estimated with the correspondent components of
z, and all the indexes in the double and triple sums go from
1 to N . A cost function J can then be constructed:

J =
∑
i≥j

(
σy

ij − σ̂y
ij

)2 +
∑

i≥j≥k

(
κy

ijk − κ̂y
ijk

)2

(1 − δijk)

(8)

with the definitions in (5), (6) and (7). All the indexes in
the sums go from one 1 to N with the order constraints in-
dicated in the sums’ lower limit. The function J is function
of several parameters, concretely λi, βj , αnm and Brs, with
all the indexes between 1 and N , and the correct solution
will be the minimum of this cost function.

In order to carry out the minimization, the steepest de-
scendent gradient method is used, because of its simplicity
and common use in ICA problems. In this method the pa-
rameters are computed iteratively, using the gradient of the
cost function J . Concretely, whatever set of parameters �θ of
J in the step k is computed by:

�θ(k) = �θ(k − 1) − µ∇�θJ (9)

where ∇�θJ = [∂J/∂θ1, . . . , ∂J/∂θN ]T is the gradient of
J respect to the set of parameters and µ is the learning ratio
that takes account of the size of the steps.

The gradients of J respect to the different set of param-
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eters are:

∂J

∂λi
= 2

∑
j≥k

(σy
jk − σ̂y

jk)BjiBki

∂J

∂αij
= 2

∑
l≥m

(κy
jlm − κ̂y

jlm)(1 + δjl + δjm −

− 3δjlm)BliBmi

∂J

∂βi
= 2

∑
l≥m≥n

(κy
lmn − κ̂y

lmn)(1 − δlmn)BliBmiBni

∂J

∂Bij
= 2

∑
l

(1 + δli)(σ
y
il − σ̂y

il)(Bljλj −

−
∑
m

Blmσz
jm) + 2

∑
l≥m

(κy
ilm − κ̂y

ilm)(1 + δil +

+ δim − 3δilm)(Bljαjm + Bmjαjl +

+ BljBmjβj −
∑
np

BlnBmpκ̂
z
jnp) (10)

With the gradients, the method is complete with the ad-
dition of initial values for the parameters. If the method
is applied with random initial values it seldom reaches the
correct solution. In practice, most of the methods of mini-
mizing nonlinear functions only converge to the correct so-
lution if the starting point is close enough of it. If it is not so,
the method can diverge, converge to a spurious minimum or
wander without reach any solution. So, suitable close start-
ing points will be specified in the next section in order to
permit the convergence to proceed correctly.

To sum up, the SICA method consists of the equations
(9), with the gradients (10) and some appropriate starting
points.

4. RESULTS

In this section, the behaviour of the SICA method is tested
to see if it actually improves the result of the standard ICA
methods and how it depends on the level of noise and the
number of signal. The sources used have unit variance and
truncated rational pdf. They are obtained by the exponenti-
ation of N uniform distributed signals in the interval [0, a i),
with different ai in each one of the N sources. These sources
are mixed with a full rank square matrix, where all its ele-
ments have been generated randomly in the interval [0, 1).
After this, independent speckle noises are multiplied with
each one of mixed signals. The speckle noises are gener-
ated as uniform distributed signal with one mean, to com-
plete the model (1). The standard deviation of the speckle
noise will change in order to test the behaviour of the SICA
method in different levels of noise.

As it has been pointed out before, if the SICA method
starts with random values in their parameters, the method
seldom reaches an acceptable solution. A way to reach the

convergence is to select starting values close enough of the
correct solution. Not too much a priori information is avail-
able possible about the values of the parameters β i and αij ,
except they are strongly dependent on the noise statistic, and
if the noise is small, they are expected to be small. So, they
can be initialized to zero. On the other hand, the parame-
ters λi are defined as positive and it is easily to obtain that
λi = σv

i (σz
ii + (µz

i )
2)/(1 + σv

i ), so if the variances of the
noises can be estimated, this will be the starting point. The
variance of the speckle noise can be obtained in a speckle
image using some uniform patch in the image. Although
in this section the variances of the noises are supposed to
be known, this is not a real limitation, since a value of zero
as starting point for the parameters λi also provides good
performance.

Further, there is no initial information about the param-
eters Bij and resort has to be made to any standard ICA
method in order to find a starting point. This is not an un-
happy fact since this paper does not try to design an inde-
pendent method to obtain the mixing matrix, rather it at-
temps to improve the results of ICA methods. If the signal
is free noise, ICA methods obtain the correct solution, so
if the noise is small it is expected that the ICA solution be
close to the correct solution. Therefore, a standard ICA so-
lution will be the starting point for the parameters B ij . It
will be tested if the standard ICA methods provide solutions
close enough to allow SICA to converge in a noisier envi-
ronment. The ICA method that is used as a starting point is
the FastICA method [3], which has proved to be an useful
and fast method in the application of ICA to different fields.

In order to characterize the behaviour of the method, a
parameter d is defined to measure how close the unmixing
matrix and the inverse of the mixing matrix are. In the de-
velopment of the SICA method, the arbitrary scale factor
has been eliminated with a condition over the variances of
the sources, but this does not remove a sign indetermina-
tion. Furthermore, there is a permutation indetermination
in the model used. So, if the speckle ICA model is per-
fectly followed by the data and the functions in (7) are per-
fectly estimated, the family of linear transformations which
fulfil the conditions (5) and (6) are the inverse of the mix-
ing matrix or a permuted sign-switched version of this, i.e.
BA = PS where P is a permutation matrix and S is an
diagonal matrix with its diagonal elements equal to one or
minus one. The parameter d is defined as the minimum dis-
tance of the transformation BA to the identity or whatever
permuted sign-switched version of the identity [2]. The dis-
tance is measured as the Frobenius norm of the difference,
so:

d = min{
∑
ij

((BA− PS)ij)
2} (11)

where the minimum is taken over all the possible permuta-
tions and sign’s changes. In the figures 1 and 2, the values
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Fig. 1. Mean of d as funtion of the st for eight signals.

of the parameter d for the FastICA and SICA methods as
function of the standard deviation of the speckle noise, st,
are presented. The signals has been defined previously, with
the number of signals equal to eight in the figure 1 and to
nine in the figure 2, and the number of data in the signals
are 100000. The showed parameters have computed as the
mean of 100 realizations.

In the figures it can be seen how the FastICA results are
clearly improved by the SICA method, for both number of
signals and for a range of noise level. It also can be seen
that a relatively bad value in the FastICA solution allows
SICA to converge, as it happens for st = 0.07 and eight
signals, where a big value of d for FastICA (bigger than
0.07) provides a quite small value of d for SICA (near to
0.01). Theoretically, the SICA method should obtain the
correct solution for whatever level of noise. In the practice
this is not so, since the bigger the speckle noise the worse
the estimation of the statistical functions associated with (5)
and (6). Thus, the SICA method also gets worse when the
noise increases, but its results continue to be better than the
FastICA’s. The parameter d has also been computed for all
numbers of signals between three and seven and in all the
situations it has been smaller for the SICA method than for
FastICA.

5. CONCLUSIONS

In this paper a new method, SICA, to obtain the mixing
matrix from a linear mixture of independent sources in the
presence of speckle noise has been developed. The method
tries to overcome the limitations that the ICA methods have
in this kind of signals. In order to do this, the SICA method
does not find a non correlation and a non higher-order cor-
relation between the outputs, as ICA does, but it finds a spe-
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Fig. 2. Mean of d as funtion of the st for nine signals.

cific structure in the second- and third-order statistic of the
output, which takes into account the multiplicative model
that the speckle noise fulfil. The SICA method has been
tested and its results improve clearly the ones obtain by
standard ICA methods for speckle mixture of independent
sources.

6. REFERENCES

[1] A. J. Bell and T. J. Sejnowski, “An information-
maximization approach to blind separation and blind
deconvolution,” Neural Computation, vol. 7, pp. 1129–
1159, 1995.

[2] P. Comon, “Independent component analysis—a new
concept?,” Signal Processing, vol. 36, pp. 287–314,
1994.

[3] A. Hayvärinen and E. Oja, “A fast fixed-point algorithm
for independent component analysis,” Neural Compu-
tation, vol. 9, pp. 1483–1492, 1997.

[4] X. Zhang and C. H. Chen, “A new independent compo-
nent analyis (ICA) method and its application to SAR
images,” in Proc. of NNSP, 2001, pp. 283–292.

[5] S. Chitroub and B. Sansal, “Unsupervised learning
rules for POLISAR images analysis,” in Proc. of NNSP,
2002, pp. 567–576.

[6] J. Karvonen and M. Similä, “Independent component
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