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ABSTRACT

Convex set theoretic estimation methods have been shown
to be effective in numerous signal recovery problems due to
their ability to incorporate a wide range of deterministic and
probabilistic information in the form of constraints on the
solution. To date, probabilistic information has been used
exclusively to constrain statistics of the estimation residual
to be consistent with known properties of the noise. In this
paper, we propose a new technique to construct constraint
sets from probabilistic information based on Stein’s identity.
In this framework, probabilistic attributes of the signal to
be recovered are estimated from the data. The proposed
approach is applicable to signal formation models involving
additive Gaussian noise and it leads to geometrically simple
sets that can easily be handled via projection methods. An
application to image denoising is demonstrated.

1. INTRODUCTION

We consider the classical linear recovery (reconstruction
or restoration) problem of estimating a signal  in a real
Hilbert space H from the observation of a signal

y=LT+u, (1)

in a Euclidean space G, where L: ‘H — § is a linear oper-
ator modeling the signal formation process and u € G is a
noise component. Solving this problem as a convex feasibil-
ity problem consists in finding a signal € H that satisfies
all the convex constraints derived from a priori knowledge
and from the observed data [2, 12, 15] (see also [7, 9, 13, 14]
for recent applications of this framework). If we let .S; de-
note the closed and convex subset of H of signals satisfying
the ith of m constraints, the problem can be conveniently
recast in the set theoretic format

Find z € S = (1) S:. )

i=1

The main asset of the set theoretic approach is to allow for
the incorporation of a broad range of information in the def-
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inition of a solution. On the other hand, its numerical viabil-
ity stems from the availability of efficient numerical meth-
ods for solving the convex feasibility problem (2) [2]. More
generally, one can select a specific feasible signal by mini-
mizing a suitable convex function J over S, i.e., by solving

Find 2 € S = (1) S; suchthat J(z) = inf J(S). (3)

i=1

When J is a quadratic function, this problem can be solved
with the parallel decomposition methods proposed in [3].

Assuming the operator L to be known in the signal for-
mation model (1), there are various techniques for con-
structing constraint sets from deterministic a priori infor-
mation about T itself [2, 10, 15] or about the additive noise
process [2, 5, 12]. To date, probabilistic information has
been used exclusively to constrain some statistics of the es-
timation residual y — Lx to be consistent with known prop-
erties of the additive noise u. This approach was initiated in
[12] and further developed in [5] and [2].

The purpose of this paper is to introduce a new tech-
nique to exploit probabilistic information in set theoretic
methods. Under an additive Gaussian noise assumption, we
show that statistical constraints on the signal to be recovered
can be constructed from certain statistics of the observed
signal y via an identity due to Stein [11]. These additional
constraint sets enrich the set theoretic formulation of the
problem and lead to improved estimates. Numerically, the
sets thus obtained turn out to be quite simple geometrically
and they therefore lend themselves to straightforward pro-
cessing via projection techniques. Although Stein’s identity
has found various applications in statistics [1] as well as in
wavelet-based denoising problems [6, 8], its use in set the-
oretic estimation appears to be new.

In Section 2, we state our basic assumptions, review
Stein’s identity, describe the proposed set construction tech-
nique, and provide a statistical confidence analysis. Numer-
ical aspects are also discussed. Section 3 is devoted to an
application of the proposed framework to image denoising.
The numerical results illustrate the benefits of incorporating
these new constraints.
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2. PROPOSED SET CONSTRUCTION METHOD

2.1. Standing assumptions

The signal space H is a real Hilbert space and the observa-
tion space G is a Euclidean (finite dimensional real Hilbert)
space with scalar product (- | -). Regarding (1), it is as-
sumed that L: H — G is a known bounded linear operator
and that 7, u, and y are realizations of some random vec-
tors. Finally, (ex)1<k<x i an orthonormal basis of G and
1p; is a real-valued function defined on R.

2.2. Stein’s identity

The proposed approach relies on the following fact.

Lemma 1 [11] Suppose that A and B are real-valued ran-
dom variables such that

i) E|A|? < +oo;

ii) B— A is a zero-mean Gaussian random variable with

variance o;

iii) A is independent of B — A;

iv) 1, is continuous, piecewise differentiable, and

lim  ;(v)exp ( - M) = 0;

|[v|—+o00 202

(V6 € R)

v) 0 < Elty;(B)|?> < 400 and E[y}(B)| < +oc.
Then E(Av;(B)) = E(Bv;(B)) — U2Ewg(3).

2.3. Set construction

We can write

K K K
Lz = Zakeka Y= Zﬁkeka and u = Z’Ykek, (4)
k=1 k=1 k=1

where, for every k € {1,..., K},
ap = (LT[ er), Br = (y | ex), and yp = (u | ex). (5)

In view of the assumptions made in Section 2.1, @y, O,
and -y, are realizations of random variables Ay, Bg, and
Cy, respectively. Under the provision that 1);, A, and By,
satisfy the assumptions required in Lemma 1 (in particular
C}, is Gaussian with variance o2), Stein’s identity yields

E(Arvi(Br)) = E(Bri(Br)) — o’ EYj(Bi).  (6)

Naturally, this probabilistic identity is not directly enforce-
able and it must be approximated by a statistical one. Pro-
vided that K is large enough and under the technical con-
ditions to be made precise in Assumption 3, the above ex-
pectations may be empirically estimated by the consistent

statistics

K
E(Ai(Br) = = D @ti(B) )
k=1

and

E(Bii(By)) — 0”Ej(By) =~
1, E X
= (D2 BB = o* D wi(3)). ®)
k=1 k=1

Example 2 Let ¢;: v — |v[P~!sign(v), where p > 1
and sign(v) = 1, if v > 0 and —1 otherwise. Then
E(Bivi(Br)) = E|Bg|P, which shows that 1); enforces a
constraint close to a p-th order absolute moment constraint.
In particular, if p = 2, then ¢); = Id and we obtain precisely
a constraint on the correlation between A, and By,. Since in
this simple case Stein’s formula reduces to

E(Axvi(Br)) = E|By|* — 0* = E[Ax|?, ©9)

the resulting constraint is very similar to one on the energy
of Lz. One potential advantage of the proposed approach
with respect to the classical convex energy constraint is that
the latter guarantees only that an upper bound is satisfied,
whereas the former provides an equality.

It follows from (6) that the difference of the statistics in
(7) and (8) should lie within some confidence interval, say

S Civ

(10)
where (; is derived from the asymptotic distribution of the
statistics and some confidence level.

Now let x € H be a candidate solution to (1) and
let (ar)1<k<k denote the coefficients of Lz in the basis
(ex)1<k<r - Then (10) leads at once to the constraint set

K K K
Z i (Br) — Z Breti(Br) + 0 Z ¥ (Br)
k=1 k=1 k=1

Sl{IGH

K
Z ari(Br) — mi
=1

SCZ}, (11)

where « «
mi =Y Brvi(Br) — 0 Y Wi(Br). (12)
k=1 k=1

The problem of determining the bound (; is addressed next.

2.4. Confidence analysis

The families (Zk)lgkgK, (Bk)lgkgiﬁ and (Ck)lgkgK are
extracted from random sequences (Ag)rez, (Bk)kez, and
(Ck)rez such that

(Vk € Z) By = Ay + Ch. (13)
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Assumption 3
i) (Ap)rez is an i.i.d. sequence with finite variance;

i) (Ck)kez is a zero-mean Gaussian i.i.d. sequence with
variance o*;

iii) (Ag)rez and (Cy)rez are independent;

iv) 1, is continuous, piecewise differentiable, and

(V0 €R) lim wvy(v)?exp ( - M) =0;

|[v|——+o00 202
v) 0 < Et;(Bo)|? < 400 and E|}(Bo)|? < +oo.

Theorem 4 [4] Let N be a standard normal random vari-
able, suppose that Assumption 3 is in force, and define

K K
Dg =o” Z¢i(3k)2 + o Zd};(Bk)Q
k=1 k=1
and

Ex = ZZM/%(B/@) - Z (Biii(By) — o¢i(Bg)).

k=1 k=1

Then Dy [varEk P21 and Ex/vDk 4 N, as K —
—+00

Thus, for K large enough, the bound ¢; in (11) can be de-
termined from the tables of the standard normal distribution
for a preset confidence level.

We conclude this section by noting that, for the sake of
brevity, assumptions i)—iii) above are stated with indepen-
dence conditions. It is important to emphasize that, at the
expense of added technicalities, these conditions can be re-
placed by much weaker mixing assumptions [4].

2.5. Numerical issues

Let L* be the adjoint of L and let a; = Zszl ¥; (B ) L*ek.
The set S; of (11) can be rewritten explicitly as an affine
hyperslab, namely

Si={zeH| m—G<(|a)y <m+G} (14

Since the projection onto such a set can be computed in
closed form [2], the constraint it represents can easily be
handled by the convex projection algorithms which are
available to solve (2) in the case of feasibility formulations
[2], or (3) in the case of quadratic formulations [3].

It is noteworthy that in a given problem several sets of
type (11) can be constructed via the proposed technique. In-
deed, several functions 1; can be considered as well as sev-
eral bases (ex)1<k<x. From a statistical standpoint, how-
ever, care should be taken to compute the confidence level
on each \S; so as to achieve a reasonable confidence level on
the feasibility set S in (2) (see the analysis of [2]).

3. DENOISING APPLICATION

The image of Fig. 1 is obtained by adding zero-mean Gaus-
sian white noise to the standard 256 x 256 8-bit Lena image.
The image-to-noise ratio is 11.90 dB. We assume knowl-
edge of the noise variance o2 and of the pixel range val-
ues. This produces the constraint sets S; = [0, 255]% (with
K =256%) and S; = {z € R¥ | |2 — y||* < 62}, where
0o is determined as in [12]. Additional constraints related
to the proposed approach are defined by choosing as a ba-
sis (ex)1<k<k a set of discrete 2D separable orthonormal
wavelets (symlets of length 8). Three functions are involved
in this example:

e t3: v — tanh(v/a),
e y: v — v(tanh((v + x)/a) — tanh((v — x)/a)),

e t5: v +— tanh(v/a)(tanh((v + x)/a) — tanh((v —
x)/a)).

where a € R% and x € R%. Guidelines for the choice of
these functions are discussed in [4]. The wavelet decompo-
sition is realized over 4 resolutions and at each resolution
level constraints of the form (11) based on the above func-
tions have been introduced. The denoised image shown in
Fig. 3 is obtained by setting

J:x |l —r|? (15)

in (3), where the reference image r is the image produced by
the SUREshink thresholding method [6] (see Fig. 2). An in-
spection of Fig. 3 and of the values of the mean square error
(MSE) show that the proposed signal-dependent constraints
lead to an improvement of the quality of the recovery. If
only S and Sy are considered, the improvement is much
less significant, as illustrated by Fig. 4. Using constraints
constructed in different bases leads to further improvements
of these results [4].
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Fig. 1. Noisy image (MSE=904.02).
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Fig. 3. Proposed approach (MSE=166.68).

Fig. 4. As in Fig. 3 but w/o proposed sets (MSE=192.53).
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