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ABSTRACT

We present an analysis of the exploitation of noise for sig-
nal reconstruction by an array of nonlinear threshold-based
devices. This phenomenon has been described as a form
of stochastic resonance known as suprathreshold stochastic
resonance. It occurs when all devices in an array of size
N have identical thresholds and are subject to independent
additive noise. The original work showed that the mutual
information between the input and output of the array has a
maximum for a nonzero value of noise intensity, for a ran-
dom input signal. In this paper we extend the results on this
phenomenon to the case of Laplacian signal and noise prob-
ability densities, and show conditions exist under which it
is optimal.

1. INTRODUCTION

The model we analyze can be considered as a method for
analog to digital conversion in noisy conditions. It consists
of an array of N threshold devices (see Fig. 1) which re-
ceive the same input signal, x. The n-th device is subject to
continuously valued iid additive noise, ηn (n = 1, .., N ) and
the output from each, yn, is unity if the input signal plus the
noise is greater than its threshold, θn, and zero otherwise.
All outputs are summed to give the overall output signal, y.
Hence, y is a discrete signal taking on integer values from
0 to N and can be considered as the number of devices that
are currently “on” and thus

y =
1
2

N∑
n=1

sign[x + ηn − θn] +
N

2
.

For the sake of generality, we assume that the input signal
consists of uncorrelated samples of an iid random signal.
Such an array can model various devices such as flash ana-
log to digital converters subject to threshold noise, DIMUS
(Digital Multibeam Steering) sonar arrays in the “on target”
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position [1] or a summing network of N FitzHugh-Nagumo
neurons [2].

Fig. 1. Array of N noisy threshold devices. Each device
receives the same input signal, x, and is subject to indepen-
dent additive noise, ηn. The output from device n is zero
if the sum of the signal and noise is greater than that de-
vice’s threshold, θn. The overall output, y, is the sum of the
individual outputs.

Stocks has analyzed this system using Shannon infor-
mation theory [3]. For the case of all thresholds set equal
to the input signal mean, it was shown that the input-output
mutual information has a maximum for nonzero noise. This
phenomenon was termed Suprathreshold Stochastic Reso-
nance (SSR). Conventional Stochastic Resonance (SR) oc-
curs when the output of a nonlinear system is optimized by
a nonzero value of internal or input noise (see, for exam-
ple, [4]) and has been observed in many nonlinear systems
including electronic circuits, ion channels, neurons and ring
lasers (see [5] for an in-depth review). It has been proven
that stochastic resonance only occurs in nonlinear systems.
In many of these systems, the main nonlinearity is a Heavy-
side style threshold and it has been noted that for a system
consisting of a single threshold, SR only occurs for sub-
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threshold signals. By contrast, SSR occurs for arbitrary sig-
nal magnitude, due to the presence of more than one thresh-
old and therefore more than two output states. We note that
SSR is similar to dithering in ADC’s [6], with the difference
being that dithering is the term used for the deliberate addi-
tion of noise in order to shape the output noise spectrum,
whereas in the SSR model, the noise is assumed to be an
inherent, unavoidable part of the system.

Several application areas exploiting the use of SSR have
been suggested, including cochlear implant encoding based
on SSR [7], and artifical insect-vision based motion detec-
tion devices [8]. Our research is focused on investigating
these and other applications which could incorporate SSR
to improve performance when compared to conventional
means. As part of this investigation, we illustrate using a
simple model that conditions exist where SSR can be op-
timal. In this paper we compare the output of the array of
comparators in the SSR configuration to an array with dis-
tributed thresholds, which is the case for a flash analog to
digital converter. Previous theoretical and numerical stud-
ies have used Gaussian or uniformly distributed signal and
noise. Here we use Laplacian signal and noise, the reason
being that the Laplacian probability density function pro-
vides computational speed advantages over the Gaussian,
and yet unlike the uniform density has a realistic long tail.

2. MATHEMATICAL MODELING

The array of comparators gives a non-deterministic (except
in the absence of noise) and lossy transform of an input sig-
nal to an output signal. Since the transform is not determin-
istic, probabilistic measures are appropriate since the output
is uncertain given the input. The key function we need to be
able to calculate is therefore the joint probability density be-
tween the input and output signals, Pxy(x, n). All measures
we could potentially use to describe the effects of the trans-
form depend on this function. We commence by deriving a
method of calculating Pxy(x, n) for the general case of N
arbitrary thresholds, and then simplify to the SSR case of
all thresholds equal to the signal mean.

Denote the probability density of the input signal as
Px(x) and the probability mass function of the output as
Py(n). Then we have, as a consequence of Bayes’ theorem,

Pxy(x, n) = P (n|x)Px(x).

Integration of the the joint probability with respect to x
gives

Py(n) =
∫ ∞

−∞
P (n|x)Px(x)dx. (1)

We will assume knowledge of P (x) and derive a method
for calculating P (n|x). Recall we assume that the noise

density, R(η), is iid at each comparator. Let P̂n be the prob-
ability of device n being “on” (that is, signal plus noise ex-
ceeding the threshold θn), given the input signal x. Then

P̂n =
∫ ∞

θn−x

R(η)dη = 1 − FR(θn − x), (2)

where FR is the cumulative distribution function of the noise
and n = 1, .., N . If the noise has an even probability density
function then P̂n = FR(x − θn).

In general, it is difficult to find an analytical expression
for P (n|x) and we will rely on numerics. Given a noise den-
sity and threshold value, P̂n can be calculated exactly for
any value of x from (2). Assuming P̂n has been calculated
for desired values of x, a convenient way of numerically
calculating the probabilities P (n|x) for an array of size N
is as follows. Let Tn,k denote the probability that n of the
devices 1, . . . , k are “on,” given x. Then let T0,1 = 1 − P̂1

and T1,1 = P̂1 and we have the recursive formula

Tn,k+1 = P̂k+1Tn−1,k + (1 − P̂k+1)Tn,k, (3)

where k = 1, .., N − 1, n = 0, .., k + 1, T−1,k = Tk+1,k =
0 and we have P (n|x) given by Tn,N [9]. For the particular
case when the thresholds all have the same value, then each
P̂n has the same value P̂ and, as noted by Stocks [3] we
have the binomial distribution

P (n|x) = CN
n P̂n(1 − P̂ )N−n (0 ≤ n ≤ N). (4)

Thus, for any arbitrary threshold settings and signal and
noise probability distributions, P (n|x) can be easily calcu-
lated numerically from (2) and (3).

The mutual information, I , between x and y is given
by the entropy of the output, H(y), less the conditional en-
tropy of the output given the input, H(y|x). As noted by
Stocks [3], in our model H(y|x) can be interpreted as the
amount of encoded information about the input signal lost
through the channel. Since the input to the array is continu-
ously valued and the output is discretely valued, the channel
can be considered to be semi-continuous. The mutual infor-
mation through such a channel is given by

I = −
N∑

n=0

Py(n) log2 Py(n) −

−
∫ ∞

−∞
P (x)

N∑
n=0

P (n|x) log2 P (n|x)dx, (5)

and can therefore be calculated by numerical integration
with the use of (1) and (3).
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3. LAPLACIAN SIGNAL AND NOISE

If the input signal x has a Laplacian distribution with zero
mean and variance σ2

x then

P (x) =
1√
2σx

exp

(
−√

2|x|
σx

)
. (6)

If the independent noise η in each device has a Laplacian
distribution with zero mean, and variance σ2

r then

P (η) =
1√
2σr

exp

(
−√

2|η|
σr

)
.

The cumulative distribution function of the noise is

FR(y) = 0.5

(
1 + sign(y)(1 − exp

(
−√

2|y|
σr

)
)

)
,

and thus

P̂n =

⎧⎨
⎩

0.5 exp
(

−√
2(θn−x)
σr

)
, x ≤ θn,

1 − 0.5 exp
(√

2(θn−x)
σr

)
, x ≥ θn.

If we put θn = 0 ∀ n then

P̂ =

⎧⎨
⎩

0.5 exp
(√

2x
σr

)
, x ≤ 0,

1 − 0.5 exp
(

−√
2x

σr

)
, x ≥ 0.

(7)

4. RESULTS

4.1. SSR results for Laplacian signal and noise

Previous suprathreshold stochastic resonance results showed
the existence of a maximum in the mutual information mea-
sure for a nonzero value of Gaussian or uniformly distributed
noise when all thresholds are set to the signal mean. We ob-
tain similar results for zero-mean iid Laplacian signal and
noise by numerical integration of (5). This integration makes
use of (1), (4), (6) and (7). The results obtained for various
values of N are shown in Fig. 2, where we have have let
σx = 1 and plotted the mutual information against increas-
ing values of noise standard deviation, σr. For comparison,
we have also shown the same plots for Gaussian signal and
noise obtained in previous work [9].
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Fig. 2. Plot of mutual information against σr for various
values of N and Laplacian signal and noise (thick solid line)
and Gaussian signal and noise (thin solid line).

It is evident that as for Gaussian signal and noise, the
SSR effect occurs for all values of N other then N = 1.
As N becomes large, the peak in the mutual information
converges to a single value near σr = 0.5. This is consistent
with work by Hoch et al [10], who showed theoretically this
same result for Gaussian signal and noise.

4.2. Optimal thresholds for Laplacian signal and noise

The key feature of SSR is a maximizing nonzero noise value
for the case of all thresholds equal to the signal mean. How-
ever such a threshold setting does not necessarily maximize
the mutual information. For example, in the noiseless case,
with all thresholds equal to the signal mean the mutual in-
formation is only one bit per sample, whereas the mutual
information is maximized when all output states are equally
probable, and is equal to log2 (N + 1) bits per sample. This
is achieved by ensuring all output states are equally proba-
ble, that is, Py(n) = 1/(N + 1) for all n. The optimal
noiseless thresholds can be calculated from∫ θn+1

θn

P (x)dx =
1

N + 1
.

For Laplacian signal and noise we obtain the optimal noise-
less thresholds as

θn = ± σx√
2

ln
(

2n
N + 1

)
,

where n = 1, .., (N + 1)/2.
We aim to find the optimal threshold settings for an ar-

bitrary value of noise. This problem is equivalent to a noisy
optimal quantization problem. For nontrivial N , even if we
discretize the possible threshold values, the search space for
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the optimal thresholds increases combinatorially with N ,
and we must resort to heuristic or random search methods
to obtain the optimal thresholds. We have trialed a genetic
algorithm and simulated annealing for this problem, how-
ever best results have been achieved using a combination
of gradient descent and a localized random search, where
the initial trial solution for a certain value of noise, σr is
the optimal solution found for the previous, adjacent, value
of noise, σr − ∆σ. A plot showing the optimal thresholds
obtained using this method for N = 3 is shown in Fig. 3.
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Fig. 3. Plot of optimal threshold values, x = θn, against σr

for N = 3 and Laplacian signal and noise.

For small values of noise the optimal thresholds are dis-
tributed well apart from each other. However, as the noise
gets larger, the thresholds converge towards the same value
and eventually, at about σr = 0.9, the SSR configuration
of all thresholds equal to the signal mean is optimal. There
is also a region where it is not optimal to have thresholds
distributed symmetrically about x = 0, but to have two of
the thresholds at the same value. We have found this asym-
metry to consistently be the case for other signal and noise
distributions, and measures other than mutual information,
and are currently investigating the reasons for this [11].

5. CONCLUSIONS

The main results presented here is that the SSR effect oc-
curs for Laplacian signal and noise and that, as for other
distributions, the SSR configuration is optimal above a cer-
tain value of noise. This is significant for several reasons.
Firstly, in the SR literature, it is often stated that the occur-
rence of SR in a single threshold is a suboptimal method
of signal transfer. Here, we have shown that for the case of
more than threshold device, that stochastic resonance can be
optimal when the noise is sufficiently large. Secondly, the
fact that SSR can be optimal has significance for potential

applications based on the use of internal noise, since having
all thresholds equal reduces the complexity of the system,
compared to the case of requiring N distinct thresholds, par-
ticularly when N is large.

6. REFERENCES

[1] V.C. Anderson, “Digital array phasing,” The Journal
of the Acoustical Society of America, vol. 32, no. 7,
pp. 867–870, 1960.

[2] N.G. Stocks and R. Mannella, “Generic noise en-
hanced coding in neuronal arrays,” Physical Review
E, vol. 64, pp. 030902(R), 2001.

[3] N.G. Stocks, “Suprathreshold stochastic resonance in
multilevel threshold systems,” Physical Review Let-
ters, vol. 84, no. 11, pp. 2310–2313, 2000.

[4] H.C. Papadopoulos and G.W. Wornell, “A class of
stochastic resonance systems for signal processing ap-
plications,” in Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1996,
pp. 1617–1620.

[5] L. Gammaitoni, P. Hänggi, and P. Jung, “Stochastic
resonance,” Reviews of Modern Physics, vol. 70, no.
1, pp. 223–287, 1998.

[6] R.A. Wannamaker, S.P. Lipshitz, and J. Vanderkooy,
“Stochastic resonance as dithering,” Physical Review
E, vol. 61, no. 1, pp. 233–236, 2000.

[7] N.G. Stocks, D. Allingham, and R.P. Morse, “The
application of suprathreshold stochastic resonance to
cochlear implant coding,” Fluctuation and Noise Let-
ters, vol. 2, no. 3, pp. L169–L181, 2002.

[8] G.P. Harmer and D. Abbott, “Motion detection and
stochastic resonance in noisy environments,” Micro-
electronics Journal, vol. 32, no. 12, pp. 959–967,
2001.

[9] M. D. McDonnell, C. E. M. Pearce, and D. Abbott,
“An analysis of noise enhanced information transmis-
sion in an array of comparators,” Microelectronics
Journal, vol. 33, no. 12, pp. 1079–1089, 2002.

[10] T. Hoch, G. Wenning, and K. Obermayer, “Adapta-
tion using local information for maximizing the global
cost,” Neurocomputing, vol. 52-54, pp. 541–546,
2003.

[11] M.D. McDonnell, N.G. Stocks, C.E.M Pearce, and
D. Abbott, “Maximising information transfer through
nonlinear noisy devices,” in Biomedical Applications
of Micro and Nanoengineering, Dan V. Nicolau, Ed.,
2002, vol. 4937 of Proceedings of SPIE, pp. 254–263.

II - 812

➡ ➠


