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ABSTRACT

Finding sparse representations of signals is an important problem
in many application domains. Unfortunately, when the signal dic-
tionary is overcomplete, finding the sparsest representation is NP-
hard without some prior knowledge of the solution. However,
suppose that we have access to such information. Is it possible
to demonstrate any performance bounds in this restricted setting?
Herein, we will examine this question with respect to algorithms
that minimize general �p-norm-like diversity measures. Using ran-
domized dictionaries, we will analyze performance probabilisti-
cally under two conditions. First, when 0 ≤ p < 1, we will quan-
tify (almost surely) the number and quality of every local mini-
mum. Next, for the p = 1 case we will extend the determinis-
tic results of Donoho and Elad (2003) by deriving explicit confi-
dence intervals for a theoretical equivalence bound, under which
the minimum �1-norm solution is guaranteed to equal the maxi-
mally sparse solution. These results elucidate our previous empir-
ical studies applying �p measures to basis selection tasks.

1. INTRODUCTION

Sparse signal representations from overcomplete dictionaries find
increasing relevance in a large number of application domains [1,
2, 3]. The canonical form of this problem is given by,

t = Φw + ε, (1)

where Φ ∈ �N×M is a matrix whose columns represent a possibly
overcomplete basis (M > N), w is the vector of weights to be
learned, ε is noise, and t is a signal vector. In this vein, we seek
to find weight vectors whose entries are predominantly zero (i.e.,
small in the �0-norm sense) that nonetheless allow us to accurately
represent t.

Recently, a large body of important theoretical work has ad-
dressed problems like (1) in the low-noise limit, i.e., as ε → 0. For
example, Basis Pursuit finds the weight vector satisfying t = Φw
with minimum �1-norm via linear programming [2]. More gener-
ally, �p-norm-like diversity measures have been proposed (see e.g.,
[3, 4]) to find sparse solutions by solving

w = arg min
w

dp(w) �
M∑

i=1

|wi|p, s.t. t = Φw (2)

with p ∈ [0, 1]. Note that this formulation encompasses Basis
Pursuit as p → 1, whereas when p → 0, we are effectively mini-
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mizing the �0-norm directly. A descent algorithm called FOCUSS
minimizes (2), at least locally, for all values of p [4].

Ideally, we would like to use d0(w) = ‖w‖0; however, it
is well known that the resultant minimization problem is NP-hard
without some prior knowledge of the optimal solution [4]. Con-
sequently, the FOCUSS algorithm, with p = 0, is susceptible to
suboptimal local minima. In contrast, no local minima exist when
d1(w) is used, although now the global minimum need not corre-
spond with the maximally sparse solution to t = Φw.

While difficult in a general setting, if information is available
pertaining to the optimal solution, the potential exists for estab-
lishing some bounds on the performance we can expect. Using
randomized dictionaries, we will analyze performance probabilis-
tically under two conditions. First, when 0 ≤ p < 1, we will
quantify (almost surely) the number and quality of every local min-
imum. Specifically, we will show that the number of local minima
must equal the number of sparse solutions and that for each lo-
cal minimum w, d0(w) = N . (Note: A sparse solution is for-
mally defined as a solution with N or fewer nonzero entries, i.e.,
d0(w) ≤ N ).

Secondly, when p = 1, a theoretical equivalence bound has
been established in [5] whereby the globally minimum d1(w) so-
lution (easy to find) is equivalent to the globally minimum d0(w)
solution (difficult to find although ultimately what we want). More
concretely, this bound stipulates that if the (unknown) optimal so-
lution w0 satisfies d0(w0) � D0 < b, then Basis Pursuit will
always converge to w0; the bound b is dependent on the dictio-
nary Φ. We expand on this result by deriving explicit confidence
intervals for this bound in the case where Φ is a Gaussian random
dictionary. This allows us to probabilistically evaluate the perfor-
mance potential afforded by this bound.

Before we begin, we should mention that randomized dictio-
naries are of particular interest in signal processing and other dis-
ciplines [5, 6, 1]. Moreover, basis vectors from many real world
measurements can often be modelled as random. In any event,
randomized dictionaries capture a wide range of phenomena and
therefore represent a viable benchmark for testing basis selection
methods. At least we would not generally expect an algorithm to
perform well with a random dictionary and poorly on everything
else. Moreover, as we shall soon see, such dictionaries lend them-
selves to probabilistic analyses that suggest useful prescriptions
for choosing a suitable p.
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2. PERFORMANCE ANALYSIS WITH p < 1

In this section, we address the issue of finding performance guar-
antees when p < 1. Local minima pose a clear impediment to
achieving this goal, and therefore, quantifying the number and ex-
tent of such minima is crucial. While strictly deterministic results
may be evasive in general, we will now address this issue proba-
bilistically. To facilitate this goal, we first present the following
result (see Appendix for proof):

Lemma 1 If Φ satisfies the unique representation property (URP),
i.e., every subset of N columns are linearly independent, then the
set of sparse solutions of (2) with p ∈ [0, 1) is equal to the set of
local minima.

Assuming the URP holds (as is the case almost surely for dictio-
naries formed from iid elements drawn from a continuous, bounded
probability density), we can conclude from Lemma 1 that we need
only determine the number of sparse solutions in counting local
minima. Additionally, if we assume there exists only a single
degenerate sparse solution (i.e., a single solution with d0(w) <
N ), then this solution is by definition the maximally sparse so-
lution w0. Under these circumstances, it is a simple matter to
show that the total number of sparse solutions, L, is given by(

M
N

)−(
M−D0
N−D0

)
+1. But how do we know that our assumption of a

single degenerate sparse solution is valid? The following Lemma
addresses this question (see Appendix for proof):

Lemma 2 Let Φ ∈ �N×M , M > N be constructed such that
it satisfies the URP. Additionally, let t ∈ �N satisfy t = Φw0

for some w0 such that d0(w0) � D0 < N , with non-zero en-
tries of w0 drawn independently and identically from a continu-
ous, bounded density. Then there is almost surely no other solution
w �= w0 such that t = Φw and d0(w) = D < N .

Given that the conditions of Lemma 2 are satisfied, we may then
conclude that,

P

[
L =

(
M

N

)
−

(
M − D0

N − D0

)
+ 1

]
= 1. (3)

How does this result affect our performance analysis? For an ar-
bitrary initialization w and M > N (i.e., Φ is overcomplete) ,
we cannot guarantee (i.e., with probability one) that the FOCUSS
algorithm (or any other descent method) will avoid converging to
one of these local minima. Moreover, even if we allow for reinitial-
izations (a method that has been shown to be extremely successful
in [4]), an exhaustive search of these extrema to find the global so-
lution is not feasible. In fact, the only consolation we can provide
is in the special case where D0 = 1. Although local minima still
exist under these circumstances, if we initialize FOCUSS at the
�2-norm solution, it will typically always converge to the global
minima. In all other cases (i.e., D0 > 1), there is always some po-
tential that we will converge to one of the L − 1 suboptimal local
minima, each with suboptimal diversity d0(w) = N .

3. PERFORMANCE ANALYSIS WHEN p = 1

As previously mentioned, when p = 1, a single minimum exists
that may or may not correspond with the maximally sparse solution
w0. However, in [5], a substantial result is derived that dictates
when the minimum d1(w) solution is sufficient.

Theorem 1 (Equivalence Theorem [5]) Given an arbitrary dic-
tionary Φ with columns φi normalized such that φT

i φi = 1, ∀i =
1, . . . , M , and given G � ΦT Φ and κ � maxi�=j |Gi,j |, if the
sparsest representation of a signal by t = Φw0 satisfies d0(w0) ≤
b � 1/2(1 + 1/κ), then the Basis Pursuit solution (which mini-
mizes the p = 1 case) is guaranteed to equal w0.

This is a potentially powerful result since it specifies a computable
condition by which the minimum d1(w) solution is guaranteed
to produce w0. Therefore, it behooves us to determine if Basis
Pursuit and its attendant theoretical bound possess significant su-
periority over the p < 1 case by analyzing this bound in practical
problems of interest. As a step in this direction, we will derive
confidence intervals for equivalence bound b in the case where
the elements of Φ are zero-mean, iid Gaussian random variables.
This handles the empirical studies in [4, 8] and approximates many
other relevant situations. Moreover, we may potentially extend
these results to handle other randomized dictionary types.

Ideally, for a given N ,M and confidence level α, we would
like to find a critical value C such that P(b < C) = 1 − α. Such
information is extremely useful in assessing the applicability of
Theorem 1 when b is a random variable. For example, suppose we
find that C = 4.7 for some values of N, M and α = 0.05. This
implies that there is a 95% chance that the bound b will be less
than 4.7. Therefore, if for some reason we expect that d0(w0) ≥
5 > C, then there is a very low probability that Theorem 1 can
apply.

To form confidence intervals, we need to know something
about the distribution of b. We begin the analysis by noting that
the Gramian matrix G is proportional to the sample covariance
(with a known mean of zero) of the columns of Φ. Furthermore,
since we have used the �2-norm to standardize the columns, we
see that G represents the exact sample correlation matrix of Φ,
i.e., Gi,j = corr(φi, φj) = ρi,j . The distribution of each element
ρi,j is not very accessible; however, when the mean is known

τi,j = g(ρi,j) � ρi,j

√
dof√

1 − ρ2
i,j

(4)

has a t-distribution with dof = N − 1 degrees of freedom.
To use these results for the purpose at hand, we note that the

following holds for any constant C such that p(b < C) = 1 − α:

P(b < C) = P

(
κ >

1

1 − 2C

)

= P

(
max
i �=j

|ρi,j | >
1

1 − 2C

)

= P

(
max
i �=j

|τi,j | > g

[
1

1 − 2C

])
, (5)

where the first step follows from Theorem 1, which defines b as a
monotonically decreasing function of κ. The third step follows
since g(·) is a monotonically increasing function. By defining
C′ � g( 1

1−2C
), we can find a 1−α confidence interval by solving

P

(
max
i�=j

|τi,j | < C′
)

= α (6)

for C′ and then inverting the definition of C′ to find C. So how do
we find the critical value C′?
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To begin, we note that there are n � (M2−M)/2 unique off-
diagonal terms in G and therefore, n terms τi,j over which we are
taking a maximum. By construction, these elements are identically
distributed; however, they are unfortunately not all independent
of one another (the positive-definiteness of G dictates that there
must be some dependency between elements ρi,j and therefore
between elements τi,j). There are two ways to address this issue:
(I) find a strict (non-approximate) upper-bound on the true critical
value or (II), adopt an approximation that, based on Monte-Carlo
verification, is extremely good. We address these options in turn.

3.1. Method I

Suppose it is sufficient that we find a critical value C̄ (via some
C̄′) that represents a strict (non-approximate) upper bound on the
true critical value,i.e., such that,

P(b < C̄) > P(b < C) = 1 − α. (7)

We can accomplish this goal by only using the M/2 elements τi,j

that are in fact exactly independent, e.g., τ1,2, τ3,4, ..., τM−1,M

(assuming M is even), and ignoring all other terms. We note that
these M/2 terms are independent since they each use unique, in-
dependently distributed columns of Φ. Now we are employing a
maximization over fewer elements and therefore,

max
i=1,3,5,...

|τi,i+1| < max
i �=j

|τi,j |. (8)

which implies that C̄ > C (since C̄′ < C′) or equivalently, that
P(b < C̄) > 1 − α as desired. Since we are now dealing with iid
random variables, we can find C̄′ by solving

P

(
max

i=1,3,5,...
|τi,j | < C̄′

)
= P

(|τ1,2| < C̄′)M/2
= α, (9)

which is equivalent to solving

P
(
τ1,2 > C̄′) =

1 − α2/M

2
. (10)

The solution to (10) is given by C̄′ = T−1
N−1[(1−α2/M )/2], where

T−1
N−1(·) denotes the inverse t-distribution with N − 1 degrees of

freedom. We may then compute C̄ by inverting C̄′ � g( 1
1−2C̄

).
The utility of these results is that we are now able to deter-

mine areas of N, M -space where, with high probability, the Basis
Pursuit equivalence bound cannot apply. For example, we used
this procedure to compute confidence intervals for various values
of N, M as shown in Figure 1. In general, we have found that for
practical values of these variables the equivalence bound tends to
be prohibitively tight, i.e., there is a high probability that b will
be too small. For example, simulation studies were performed in
[4, 8] comparing basis selection efficacy using p = 1 versus other
methods. In these experiments, N = 20, M ∈ [30, 100], and the
optimal solution w0 satisfied d0(w0) = 4 or 7. Over the course of
numerous trials, the p = 1 solution sometimes failed to equal w0.
We can now reconcile these results with Theorem 1 by noting that,
with high probability, b < 4.0 (when N = 20 and M ∈ [30, 100])
and therefore, the equivalence result is not applicable.

In general, use of C̄ establishes a (probably) necessary but not
sufficient condition for applying Theorem 1 for Gaussian random
dictionaries: basically, if d0(w0) > C̄ as defined above, then there
is very little probability that b will be greater than d0(w0) and we
cannot apply the theorem. For (probably) sufficient conditions, we
must turn to the second method.
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Fig. 1. (95+)% critical values for equivalence bound b. For a
given value of N, M , there is a greater than 95% chance that b
will be less than the corresponding critical value C̄.

3.2. Method II

Suppose that we simply assume that all n off-diagonal terms of G
are independent (actually, we only need to assume that the distribu-
tion of maxi�=j |τi,j | is the same as if we had such independence).
We may then repeat the above analysis with M/2 replaced by n,
the net result of which is to push each of the curves in Figure 1
down towards the x-axis. Now suppose we want to utilize this
method to find a (probably) sufficient condition for using Theo-
rem 1. We can accomplish this by setting α arbitrarily high, e.g.,
α = 0.95. This allows us to find critical values C such that, with
high probability, b will be greater than C or equivalently, with high
probability the equivalence result will apply when d0(w0) < C.

In Table 1, we have tabulated five approximate critical values
obtained in this manner. We have also explored this approximation
via numerous Monte Carlo simulations (e.g., using many different
combinations of N ,M and α, five of which are shown below),
which have revealed that the critical values so obtained are statis-
tically indistinguishable from the exact critical values, indicating
that our independence assumption is quite benign. Thus, we have a
simple, accurate way of computing confidence intervals that does
not require MC techniques, which become too computationally ex-
pensive when N and M are much greater than 200.

N, M 10,40 20,40 20,80 100,200 200,400

C 1.0444 1.1586 1.1285 1.6152 1.9596
(4.9%) (5.1%) (5.0%) (4.9%) (5.0%)

Table 1. Approximate 5% critical values for equivalence bound b.
For a given value of N, M , there is approximately a 5% chance
that b will be less than the corresponding critical value. The num-
ber in parenthesis represents the percentage of Monte-Carlo trials
(out of 100, 000) that are less than the corresponding critical value.

4. CONCLUSIONS

In this paper we have addressed the issue of performance bounds
when using �p measures to find sparse representations from over-
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complete dictionaries. We have employed a probabilistic line in
handling both the p < 1 case, where we quantified the number and
quality of each local minima, and the p = 1 case, where somewhat
stronger results were possible in the form of equivalence bound
confidence intervals, under which the minimum p = 1 solution,
with high probability, is guaranteed to equal the maximally sparse
solution. However, in cases where this bound is prohibitively tight
(which we can now easily determine for Gaussian dictionaries us-
ing the methods outlined in Sec. 3), use of p < 1 may be preferred
for two primary reasons. First, if we have converged to some min-
imum and d0(w) < N , we know it must be the global minimum
(assuming the conditions of Lemma 2 are met). Conversely, if we
have converged to a solution with d0(w) = N , then we can al-
ways reinitialize and try again, a technique that has proven to be
extremely successful in [4] (we note that this option is not pos-
sible when p = 1 since there is only a single, global minima in
this case). Secondly, use of smaller values of p results in faster
convergence via interior point methods as also shown in [4].

5. APPENDIX

Proof of Lemma 1: That local minima are only achieved at sparse
solutions has been shown in [4]. We will now handle the converse.
A vector w∗ is a constrained local minimizer of dp(w) (s.t. t =
Φw) if for every vector w′ ∈ Null(Φ), there is a δ > 0 such that

dp(w∗) < dp(w∗ + εw′) ∀ε ∈ (0, δ]. (11)

We will now show that all sparse solutions satisfy this condition.
We first handle the case where p > 0 by defining g(ε) � dp(w∗+
εw′) and then computing the gradient of g(ε) at a feasible point
in the neighborhood of g(0) = dp(w∗). We then note that at any
feasible point w = w∗ + εw′ we have

∂g(ε)

∂ε
=

∂dp(w)

∂w

T ∂w

∂ε
=

M∑
i=1

∂dp(w)

∂(wi)
w′

i

=

M∑
i=1

sgn(w∗
i + εw′

i)p|w∗
i + εw′

i|p−1w′
i. (12)

Since we have assumed we are at a sparse solution, we know that
at least M − N entries of w∗ are equal to zero. Furthermore, let
us assume without loss of generality that the first M −N elements
of w∗ equal zero. This allows us to reexpress (12) as

∂g(ε)

∂ε
=

M−N∑
i=1

sgn(w′
i)p|εw′

i|p−1w′
i + O(1)

= p

M−N∑
i=1

|w′
i|p

(
1

ε

)1−p

+ O(1). (13)

At this point we observe that any w′ ∈ Null(Φ) must have a
nonzero element corresponding to a zero element in w∗. This is
a direct consequence of the URP assumption. Therefore, at least
one w′

i, i ∈ [1, M − N ] must be nonzero. As such, with ε suffi-
ciently small, we can ignore terms of order O(1) (since (1/ε)1−p

is unbounded for ε sufficiently small and p < 1) and we are left in
(13) with a summation that must be positive.

Consequently, we see that for all ε ∈ (0, δ], ∂g(ε)/∂ε > 0.
By the Mean Value Theorem, this requires that g(δ) > g(0) or
more explicitly,

dp(w∗ + δw′) > dp(w∗). (14)

Since w′ is an arbitrary feasible vector, this completes the proof.
Finally, in the special case of p = 0, it is immediately ap-

parent that all sparse solutions must be local minima, since in this
case dp(w) = ‖w‖0 exactly. �

Proof of Lemma 2: Let w′
0 be a vector containing the amplitudes

of the nonzero entries in w0 and Φ1 the associated columns of
Φ. Now let us suppose that there does exist a second solution
w satisfying the conditions given above, with w′ and Φ2 being
analogously defined. This implies that for some w′,

t = Φ1w
′
0 = Φ2w

′, (15)

or equivalently, that t lies in both the span of Φ1 and the span of
Φ2, both of which are full column rank by the URP assumption.
Let us define this intersection as

A = span(Φ1) ∩ span(Φ2), (16)

where we know by construction that

dim (A) = dim (Null ([Φ1 Φ2]))

= max(0, D + D0 − N)

< D0. (17)

Note that the latter inequality follows since D < N by assump-
tion. At this point there are two possibilities. First, if D ≤ N−D0,
then dim (A) = 0 and no solution w′ (or w with d(w) = D) can
exist. Conversely, if D > N − D0, the existence of a solution
w′ requires that Φ1w

′
0 resides in a (D + D0 − N)-dimensional

subspace of the D0-dimensional space Range(Φ1). However, we
know that with the entries of w′

0 independently drawn from a con-
tinuous, bounded density function, Φ1w0 also has a continuous
and bounded density in Range(Φ1) and the set {w′

0 : Φ1w
′
0 ∈ A}

is of probability measure zero (see [7] for a discussion of proba-
bility measures). Therefore, we know that

P(w �= w0 exists s.t. d(w) < N) = P(Φ1w
′
0 ∈ A) = 0, (18)

completing the proof. �
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