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ABSTRACT

A signal subspace speech enhancement based on subspace
tracking algorithm is presented. The proposed method
incorporates a perceptual filterbank which is derived from
psycho-acoustic model for subband processing. The 
experiments were performed using the TAICAR in-car
noisy speech database. Subjective and objective tests 
show that our method outperforms other existing signal
subspace methods.

1. INTRODUCTION 

Speech enhancement attempts to improve perceptual 
aspects of voice communication systems when the signal 
is corrupted by noise (e.g., overall quality, intelligibility
for human or speech recognizers). The improvement is in
the sense of minimizing the effects of the noise on the
system performance. Ephraim and Van-Trees proposed a 
signal subspace speech enhancement system [1]. The 
system decomposes the input signal into signal
components and noise components. To improve speech 
quality, the noise components are discarded. Then, an 
estimation of the clean speech is made for the signal
components. The decomposition has been done using
Karhunen-Loeve transform (KLT). Subspace approaches
have been successfully applied in the area of speech 
enhancement. However, it has a drawback of the high
computational complexity for KLT. 

In this paper, we propose a speech enhancement
technique based on subspace methods. The subspace 
decomposition is achieved by using a subspace tracking 
algorithm [2]. The tracking method is a normalized least-
mean-square (NLMS) adaptive filter. It has a
computational complexity of linear order and is suitable
for real time applications. To reduce signal distortion
while applying the subspace tracking, a perceptual 
filterbank is used. The perceptual filterbank approximate
the critical bands of psycho-acoustic model. To evaluate
the proposed system, TAICAR database is used (Taiwan
in-CAR speech database). The experimental results show
that this system has good performance in car noisy
environments.

The organization of the paper is as follows. Section 2
describes the overall system. It consists of perceptual
filterbank, signal subspace speech enhancement and 
subspace tracking algorithm. In section 3, some
experimental results are discussed. Section 4 draws 
conclusions.

2. THE PROPOSED SYSTEM 

The proposed speech enhancement system based on 
subspace tracking is shown in Fig. 1. At the start of 
system processing, input signal is divided into subband
time series by the analysis filterbank. Following subband
analysis, the vector of subband signal is presented to the
subspace tracking block to extract eigenvectors. Then, the 
gain adaptation is performed to estimate the clean speech. 
To reconstruct the enhanced full-band speech, the 
subband synthesizer is applied to the gain-modified vector
of subband signal.
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Fig. 1. Block diagram of the proposed system.

2.1. Perceptual Filterbank 
The perceptual filterbank is obtained by adjusting the
decomposition tree structure of the conventional wavelet
packet transform in order to approximate the critical 
bands of the psycho-acoustic model as close as possible
[3]. The primary reason for embedding the psycho-
acoustic model in the filterbank is that humans are capable
of detecting the desired speech in a noisy environment
without prior knowledge of the noise [4]. One class of
critical band scales is called Bark scale. The Bark scale z
can be approximately expressed in terms of the linear
frequency by
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where f is the linear frequency in Hertz. The
corresponding critical bandwidth (CBW) of the center
frequencies can be expressed by

CBW( ) ( . ) .f fc c25 75 1 14 10 6 2 0 69         (2) 
where fc is the center frequency (unit: Hertz). 
Theoretically, the range of human auditory frequency
spreads from 20 to 20000 Hz and covers approximately
25 Barks. In this paper, the underlying sampling rate was
chosen to be 8 kHz, yielding a bandwidth of 4 kHz. 
Within this bandwidth, there are approximately 17 critical
bands as listed in Table I [5].

Table I: The characteristics of critical bands under 4 kHz

According to the specifications of center frequencies,
CBW, lower and upper cutoff frequencies given in Table I, 
the tree structure of the wavelet packet transform can be 
constructed as shown in Fig. 2(a). The corresponding
frequency bandwidth of the wavelet packet tree is shown
in Fig. 2(b). It contains 16 decomposition cells with 5
decomposition stages to approximate these 17 critical 
bands which are corresponding to wavelet packet
coefficient sets , where j=3, 4, 5, m=1, …, 17. 

mjw ,

2.2. Signal Subspace Speech Enhancement 

The model used in the subspace approach assumes that the
noise signal is additive and uncorrelated with the speech 
signal,

nxy ,                                 (3) 

where y, x, and n are K-dimensional vectors and denote
the noisy speech, clean speech and white noise 
respectively. Let be a linear estimation of y,
where H is a 

Hyx̂
KK matrix. The error signal is given by

nxHnxIHxx )(ˆ  ,           (4) 
where x represents the signal distortion and n

represents the residual distortion [1]. Denoting the signal
distortion energy by }){( TEtr xxx and the eigenvector
matrix of covariance matrix of x by U=[u1, u2, …, uK], the
spectral domain constrained (SDC) estimator H is 
obtained by
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Fig. 2: (a) Tree structure of the perceptual filters. (b)
The frequency bandwidths for the perceptual filters. 
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where and M are noise variance and the dimension of 
signal subspace respectively. Let the kth eigenvalue

2

)(kx associated with the kth eigenvector be arranged 
in descending order for k=1, …, K. The estimator is given
by

ku

TUQUH ,                              (7) 
where Q is a diagonal matrix with the kth diagonal
element given as the generalized Wiener filter of the
form

kq
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2.3. Subspace Tracking Algorithm 

As it was discussed in Section 2.2, the estimator requires
an accurate estimation of eigenvalues and eigenvectors of 
clean speech covariance matrix. Since noises in each
subband are assumed to be white and uncorrelated with
the clean speech, it is clear that the eigenvectors of noisy 
speech are the same as clean speech’s. Hence, it may
perform the eigen-decomposition of noisy speech for
finding U and )(kx can be obtained by subtracting the
eigenvalues of noises from the eigenvalues of noisy signal.
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We adopt the subspace tracking method [2] for 
extracting the eigenvectors. This is an adaptive method
that tracks eigenvectors of covariance matrix using a 
normalized least-mean-square (NLMS) type algorithm. It
is summarized in Table II. 

Table II: Subspace tracking algorithm

3. EXPERIMENTAL RESULS 

The evaluations are based on TAICAR speech database. 
The TAICAR database is briefly introduced below.

3.1. TAICAR Database 

A group of researchers in the area of speech processing in 
Taiwan together initiate an in-car speech collection 
project called TAICAR (Taiwan in-CAR speech 
database) [6]. The objective of the TAICAR project is to
produce an in-car Mandarin speech database which can be
used as training and testing material for speech processing 
in car environment.

The detailed description of the recording elements is
given below:

A notebook PC with an Intel Pentium processor
is the kernel of the speech data collection system.
A DAQP PCMCIA multi-channel signal 
recording card, which is capable to record up to 
16 channels of signal, is pluged into the
notebook as the recording interface. 
Four omni-directional microphones form a linear
microphone array (channel 0-3). 
One omni-directional microphone is place
before the speaker (channel 4). 
One uni-directional microphone is worn on the
head of the speaker (channel 5). 

A pre-amplification circuit is utilized before the speech
signal is feed to the PCMCIA card. The photographs
showing the position of microphone array, and navigator
are given in Fig. 3. Fig. 4 is a snapshot of the speech data. 

(a)

(b)
Fig. 3: (a) Microphone array placement. (b) Speaker and
recording notebook.

Fig. 4. Speech waveform of the utterance “EQ 7637” (in 
Mandarin), from channel 0 to channel 5 (top to bottom).

3.2. Performance Evaluation

We present analysis for the speech enhancement
performance of three subspace decomposition methods: (1)
using discrete cosine transform (DCT); (2) using KLT; (3)
using the proposed approach. The results are shown in
figures 5, 6 and 7. In these figures, the legends are (a) 
original noisy speech; (b) enhanced speech; (c)
spectrogram of noisy speech and (d) spectrogram of 
enhanced speech. It is obviously that KLT and our 
approach are better than DCT. Furthermore, our approach
outperforms the other methods in computational
complexity. For an analysis frame length of n, the 
computational complexity of our work, DCT and KLT are
O(rn), O(nlog n) and O(n3), respectively, where r is the
number of eigenvectors.
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We also have another test to compare these different 
approaches. The evaluation was performed by a group of
20 listeners. Subjects were asked to rank the voice they
heard. The voice consists of three type of noisy speech 
together with the enhanced results based on different
approaches. The results are given in Table III. This
evaluation is also known as mean opinion score (MOS)
testing (5=Excellent; 4=Good; 3=Fair; 2=Poor; 1=Bad).

(a)

(b)

(c)

(d)
Fig. 6. Speech enhancement based on KLT [1]. 

(a)

(b)

(c)

(d)
Fig. 7. Speech enhancement based on our approach. 

Table III: Five-grade MOS testing 
Speech from TAICAR Database 

Car
Ignited Downtown Area Highway

DCT 2.6 2.1 1.9
KLT 4.4 4.1 3.8
Ours 4.2 4.0 3.9

4. CONCLUSIONS

In this paper, a subspace tracking speech enhancement
method was proposed. The proposed method incorporates
psycho-acoustic model (perceptual filterbank) by
adjusting the decomposition tree structure of the 
conventional wavelet packet transform. Experiments were 
carried out using the TAICAR in-car noisy speech 
database. According to the experiments and MOS
evaluation, our method achieved enhancement
performances very close to the KLT-based method.
Another significant advantage of the proposed method is
that the computational complexity was the best among the
compared methods.

(a)

(b)

(c)

(d)
Fig. 5. Speech enhancement based on DCT. 
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