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ABSTRACT

This paper addresses the issue of extracting the pure second-order
cyclostationary (CS2) part of a signal. This proves very useful in
many situations where the CS2 part actually contains most of the
information in a signal, such as in communications or in vibration
analysis. The proposed method exploits the spectral redundancy
induced by the pure CS2 part and tries to reconstruct it by combin-
ing several filtered frequency-shifted versions of the signal. The
derivation of the optimal filters is described in detail. The effec-
tiveness of the method is finally demonstrated on both simulated
and real industrial examples.

1. INTRODUCTION

Cyclostationarity has proved extremely useful for modelling com-
munication signals and has led to many breakthroughs in that field.
Recently, it has been demonstrated that cyclostationarity also pro-
vides powerful tools for analysing vibration signals captured on
rotating machinery, for noise control or diagnosis purposes. Just
like communication signals, vibration signals are cyclostationary
at different orders. Depending on the user’s objectives, a given
order of cyclostationarity may be scrutinized in priority. Indeed,
numerous analyses are mainly concerned with either the periodic
part, which belongs to first-order cyclostationarity (CS1), or the
second-order cyclostationary (CS2) part of a signal. The former is
usually examined with classical Fourier analysis whereas the latter
is scrutinized through the spectral correlation or the Wigner-Ville
spectrum [1]. The interest of separately processing the periodic
part and the CS2 part is illustrated in [1, 2]. Moreover, each part
may have a different physical significance. For example, in a gear-
box, the periodic part can be assigned to the gear signal whereas
the CS2 part rather relates to the bearing signal [3]. The extrac-
tion of the periodic part from a signal can efficiently be achieved
by various algorithms, which are all different means of filtering a
signal: synchronous averaging [4], adaptive line enhancer [5], ze-
roing the discrete components in the Fourier Transform, etc. As
a by-product, the residual component resulting from this opera-
tion contains the pure CS2 part. However, the latter is usually
strongly corrupted by additive noise sources. The purpose of this
paper is to propose a technique that can extract the pure CS2 part
from the residual signal. To the authors’ knowledge, this issue has
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never been addressed in this form in the signal processing litera-
ture. Although the SCORE algorithm introduced by Agee, Shell
and Gardner [6] achieves a very similar goal, it uses spatial filter-
ing on a array of sensors and therefore was not suited to our ap-
plication. We propose herein an approach based on time filtering
which equally applies to the multi- and mono-sensor cases. The
key idea will first be introduced in the frequency domain where it
can intuitively be understood as exploiting the spectral coherence
that exists between the spectral components of a CS2 signal. A
set of optimal linear periodically-time-varying filters (LPTV) will
then be derived in the time domain where it is better adapted to
numerical implementation.

2. PROBLEM STATEMENT

2.1. Definitions

A signal is said to be purely cyclostationary at order N if its cu-
mulants of order N are all (quasi) periodic functions of time. It
is often more relevant to use the concept of pure cyclostationarity
(i.e. cumulants instead of moments) because it implicitly removes
all cyclostationarities coming from lower order moments [7]. For
example, a signal s(n) is said to be purely CS2 if

E {(s(n) − Es(n)) (s(n − τ) − Es(n − τ))} � C2s(n, τ) (1)

is a (quasi) periodic function of n, i.e. if the autocorrelation func-
tion of the centered signal c(n) = s(n) − Es(n) has a Fourier
expansion

C2s(n, τ) = R2c(n, τ) =
∑
αk

R
αk
2c (τ)ej2παkn (2)

over a non-empty set of cyclic frequencies αk �= 0. In the above
equation, the R

αk
2c (τ) Fourier-Bohr coefficients are known as the

cyclic autocorrelation functions of signal c(n).

2.2. Signal enhancement issue

For the sake of simplicity, the issue is presented here for one sensor
output s(n). The admitted model is [2]:

s(n) = p(n) + c(n) + n(n) (3)

where

• p(n) = Ep(n) is the periodic part,
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• c(n) is the pure CS2 part,

• n(n) is the noise which contains all components not per-
taining to p(n) or c(n). It is uncorrelated with c(n) - corre-
lated “noise” will be included in c(n). Note that n(n) is not
necessarily stationary and can exhibit higher order types of
pure cyclostationarity.

As mentioned in the Introduction, it is an easy matter to ex-
tract the periodic part p from the measured signals s. Hence, the
remainder of the paper will only focus on extracting the pure CS2
part c from the centered signal

x(n) = c(n) + n(n) (4)

Indeed, just as first-order cyclostationarity is used to estimate p,
advantage will now be taken of second-order cyclostationarity to
estimate c.

3. PRESENTATION OF THE METHOD

3.1. A solution based on spectral redundancy

Let X(f), C(f) and N(f) be the Fourier transforms of x(n), c(n)
and n(n), respectively. By convention Y (f) denotes the spectral
increment dY (f) in the Cramér’s decomposition of signal y(n)
[8]. It can be shown that the second-order cyclostationarity of sig-
nal c(n) implies that

E
{

X(f)XH(f − αk)
}

� S
αk
2x (f) = S

αk
2c (f) �= 0 (5)

for any cyclic frequency αk �= 0, where the cyclic spectral ma-
trix S

αk
2c (f) has for elements the Fourier transforms of the cyclic

autocorrelation functions R
αk
2c (τ). As is well-known, this means

that there exist non-zero correlations between spectral components
of a CS2 signal spaced apart by αk [9]. The idea of the proposed
method is to exploit these correlations. To do so, the signal is
duplicated and shifted in the frequency domain by amounts cor-
responding to the αk’s. These components are then multiplied by
appropriate filter transfer functions and combine together in order
to reconstruct the original signal. Figure 1 illustrates this idea on
a simplified mono-sensor case dedicated to extracting the pattern
at frequency f1 from the background noise. The reconstruction
is limited there to using the two cyclic frequencies α1 = f1 and
α2 = f2.

Obviously, increasing the number of cyclic frequencies will
more efficiently reduce the background noise. At this stage, it is
important to point out that the proposed method will do its best to
reduce the effect of the noise. Perfect cancellation is in general
not possible and can only be achieved if some regions of the signal
and the noise spectra do not overlap.

In general, the reconstruction equation will be:

Ĉ(f) = G(f) · Xe(f) (6)

where

Xe(f) =
[

X (f − α1) · · · X (f − αK)
]T

(7)

is a (K × 1) extended vector which contains K cyclic frequencies,
Ĉ(f) is a the estimated CS2 part and G(f) is an (1 × K) transfer
vector to be properly designed. The next section will now detail
how to identify the transfer vector G(f) from the centered signal.

|X (f)|
2

f1 f2 f3

f

f

f

f

shift by f2
and filter

shift by f3
and filter

combine

noise

Fig. 1. Noise reduction principle

3.2. Optimal filtering

With scalar formulation, equation (7) becomes:

Ĉ(f) =

K∑
k=1

Gk(f) · X (f − αk) (8)

When all signals of interest are assumed real, the time domain
counterpart of (8) is:

ĉ(n) =

K∑
k=1

{hk(n) ∗ [x(n) · cos (2παkn)] · · ·

· · · + lk(n) ∗ [x(n) · sin (2παkn)]} for αk �= 0 ∀k (9)

with hk and lk the real and the imaginary parts of the inverse
Fourier transform of Gk, respectively. This can be recognized as a
MISO (Multiple Input Single Output) structure of LPTV filters, the
properties of which have been extensively analysed in [10]. Inter-
estingly enough, LPTV filters can be demonstrated to be optimal
among all linear filters for denoising CS2 signals [2].

Let L be the length of the filters. Then, in vector form:

hk =
[

hk (τ1) · · · hk (τL)
]T

(10)

lk =
[

lk (τ1) · · · lk (τL)
]T

(11)

(12)

where the limits τ1 and τL are to be set by the user (in general,
the filters will not have to be constrained to be causal). Let us also
write

ak(n) = x(n) · cos (2πjαkn) (13)

bk(n) = x(n) · sin (2πjαkn) (14)

for the modulated inputs. More concisely, in vector form:

ak(n) =
[

ak (n − τL) · · · ak (n − τ1)
]

(15)

bk(n) =
[

bk (n − τL) · · · bk (n − τ1)
]

(16)
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The estimate ĉ(n) is then given by:

ĉ(n) =

K∑
k=1

[ak(n) · hk + bk(n) · lk] (17)

The unknown filters in the above equation can be identified by
minimizing the squared estimation error ε(n)2 between the re-
constructed signal ĉ(n) and the original signal x(n) at different
times n. There are u = 2K · L unknown terms, so at least
Nmin = u + τL − τ1 samples must be used. Considering a signal
of N samples (N ≥ Nmin), minimizing ε(n)2 leads to the system
of equations:

C2m · s = Cm,c (18)

where C2m = mH · m, Cm,c = mH · c with

ĉ =
[

ĉ (N − τ1) · · · ĉ (τ − τL)
]T

(19)

s =
[

h0 · · · hK l0 · · · lK
]T

(20)

and

mi,j =

{
aj (N − τ1 − i + 1) for j ≤ K,

bj−K (N − τ1 − i + 1) for j > K.

1 ≤ i ≤ N − τL + τ1, 1 ≤ j ≤ 2K (21)

Since the noise is uncorrelated with the signal, the unknown corre-
lation vector Cm,c can be substituted by Cm,x = mH ·x, provided
that the nil cyclic frequency is not taken into account in the filters.
Then, the solution to the system of equations

C2m · s = Cm,x (22)

finally yields the desired optimal filters hk and lk. This can be car-
ried out by direct pseudo-inversion, or efficiently implemented by
means of an adaptive LMS-type algorithm. Figure 2 summarizes
the algorithm in the simple mono-sensor case.

It is worth pointing out that the proposed method is in essence
very similar to a blind Wiener filter. Indeed, equation (6) or (9)
could be viewed as special forms of a linear predictive equation
right from the beginning. Similarly, the system of equations (22)
could be viewed as a special (extended) form of the normal equa-
tions.

cos(2 n)��k

sin(2 n)��k

ho
K-1

loK-1

ho
K-2

loK-2

+x(n) ĉ (n)

+

-

�X(n)

Fig. 2. Scheme for estimating c(n) in the mono-sensor case
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Fig. 3. Simulated signal

4. APPLICATIONS TO SIMULATED AND REAL
SIGNALS

The first example demonstrates the proposed method on a synthe-
sized quasi-cyclostationary signal:

s(n) =

[∑
i

Aiδ (n − iT − τi)

]
∗ e(n) + n(n) (23)

where:

• δ(n) is the discrete Dirac impulse,

• n(n) is a white stationary noise,

• T is the mean inter-arrival time,

• Ai is a random amplitude following a Gaussian law N(µA, σ2
A),

• τi is a sequence of independent and identically distributed
random variables following a Gaussian law N(0, σ2

τ ),

• e(n) is an impulse response resulting from cascading second-
order (mass/stiffness/damping) systems.

Signal (23) is a reasonable model for many vibration signals cap-
tured on rotating machinery experiencing an internal fault [1, 2, 3].
Due to the random jitter τi, it can be shown to have decomposition
(3), where the periodic part and the pure CS2 part have the same
cyclic fundamental frequency α1 = 1/T . Figure 3 displays the
signal over ten cycles before and after the proposed algorithm was
used with cyclic frequencies αk = k/T , k = 1, ..., 6.

The second example is an application of the proposed tech-
nique to an industrial case. The signal of interest is a vibration
measurement captured on a rotating machine, which was suspected
to have a rolling-element-bearing fault. The characteristic feature
of such a fault is to exhibit a series of impacts dominated by the
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Fig. 4. Real industrial signal

major resonance frequencies of the structure [11]. Such a signal
can be well modelled by Eq. (23) and thus experiences second-
order cyclostationarity. Angular resampling combined with syn-
chronous averaging was used to estimate and to remove the peri-
odic part, which essentially stemmed from the gears. The result-
ing centered signal contained the impacts due to the fault, but was
highly masked by additive background noise. Figure 4 displays
it over three cycles before and after the proposed algorithm was
used with cyclic frequencies αk = k/T , k = 1, ..., 6. The good
enhancement of the first three impacts is obvious.

5. CONCLUSION

Decomposing a cyclostationary signal into its (i) periodic part, (ii)
pure second-order cyclostationary part and (iii) noise part may
prove very useful in a number of applications since these three
components usually carry different types of information. Although
many efficient techniques exist for extracting the periodic part,
the issue becomes much more complicated when it comes to the
pure CS2 part, and actually has rarely been addressed in the liter-
ature. The present paper introduced an original method dedicated
to this difficult task. It consists in designing an optimal linear-
periodically-time-varying Wiener filter, the identification of which
was shown to be feasible from the centered signal provided non-
zero cyclic frequencies are used. The performance of such a filter
depends strongly on the spectral supports of the noise and the sig-
nal to be filtered out. In general, perfect extraction is only possible
if those supports do not overlap completely. However, the perfor-
mance can be shown to increase monotonically with the number
of cyclic frequencies taken into account. In practice, this number
will be limited by computing costs and memory access. The rel-
evance of the technique was illustrated both on simulated and on

actual vibration signals measured on a rotating machine. The filter
was able to extract the repetitive patterns resulting from a fault in
a rolling element bearing.
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