
���������� In the framework of speech enhancement, many
approaches have been developed when the speech signal is only
corrupted by an additive noise. However, in an auditorium, when
echoes appear, spatial transformations between the sources and the
microphones must be considered. For this reason, we propose in this
paper to deal with a speech contaminated both by convolutive and
additive coloured noises.
The two-microphone based noise canceller we present operates as
follows: firstly, a pre-whitening step is carried out. Secondly, the
blind deconvolution method we use makes it possible to estimate the
finite impulse responses (FIR), their orders and the variances of the
additive noises, which is a great advantage. Then, the filtered
versions of speech, estimated by means of a subspace method, are
used to retrieve the original speech.

���������	
�— speech enhancement, convolutive noise, additive
noise, blind deconvolution, subspace methods

I. INTRODUCTION

n most voice communication systems, speech is corrupted
by a background noise. In the last two decades, several

methods using one microphone have been developed for
speech enhancement, as depicted in FIG 1.

FIG 1: speech enhancement, speech contaminated by an additive noise

As an alternative to the non-parametric methods using short
time spectral attenuation [2] [6], model-based speech
enhancement can be considered.
On the one hand, when choosing an autoregressive (AR)
model, Wiener [10] or Kalman filtering [8] can be performed
to enhance speech. These methods usually require the
estimation of the variance of the additive noise and the
prediction coefficients from noisy observations, which is
however a challenging issue.
On the other hand, the signal can be modelled, more
realistically, as a sum of sinusoidal tracks. In [12], the authors
propose to update, frame by frame, the estimation of the real

magnitudes of the frequency components, by using a Wiener
filter. The frequencies are then tracked by smoothing the
spectral envelope of each analyzed frame. For sake of
simplicity, a sum of complex exponentials is often preferred
[16]. Thus, subspace methods have been investigated [11] [7].
The purpose is to separate the noisy observation subspace into
two orthogonal subspaces:
• The signal subspace, estimated in the least square or

minimum variance senses [11] or by introducing
perceptually relevant estimation criteria [7], makes it
possible to retrieve the original speech.

• The noise subspace provides information about the noise
statistics.

This subspace decomposition is performed by using the
Karhunen-Loève transform. The dominant eigenvalues of the
noisy observation autocorrelation matrix correspond to the
signal subspace while the lowest ones correspond to the
variance of the additive noise. An alternative approach
consists in only considering the dominant singular values of
the Toeplitz noisy observation matrix. It should be noted that
these methods have been also extended to the coloured
additive noise case in [11].
When considering the block-diagram proposed in FIG 1, the
speech and the additive noise are assumed to be uncorrelated.
Therefore, speech enhancement consists in retrieving the first
formants of speech by reducing the additive noise. However,
in an amphitheatre or an auditorium where speech echoes may
appear, these methods can not provide significant results since
they do not take into account the spatial characteristics of both
the source and the noise. For this reason, acoustic room FIR
representing the spatial transformations between the sources
and the microphones are introduced. In addition, several
microphones must be used (Cf. FIG 2).
Few approaches have been recently developed to retrieve the
source speech from the observations contaminated by
convolutive and additive noises. In [4], the authors combine
two methods: first, a NLMS-based multi-channel adaptive
echo canceller is completed. Each “channel” resulting output
is the sum of the source speech and the additive coloured
noise. Then, a Generalized Singular Value Decomposition
(GSVD)-based optimal filter, presented in [5], is completed to
retrieve speech.

���������	��
��
��
������������
����

�
�
������
������
�������������������


W. Bobillet1, E. Grivel1, R. Guidorzi2 and M. Najim1

1 Equipe Signal et Image, UMR 51 31 LAP,
351 Cours de la libération, 33405 Talence Cedex, France

2 Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna,
Viale del Risorgimento 2, 40136 Bologna, Italy

email: {bobillet, eric.grivel, najim}@tsi.u-bordeaux1.fr, rguidorzi@deis.unibo.it

I

�

�(�)�
(�)�


���
��

���
���(�)�

���
��

��
���������

���
�

����

)(ˆ �


�����
��


���
��

II - 7770-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



In this paper, we propose an alternative method which
combines a blind deconvolution technique and a subspace
method for speech enhancement. We consider a two-
microphone based device (Cf. FIG 2). For each path, the
observation � � (�) corresponds to the sum of a filtered version
� � (�) of the speech signal 
(�) and an additive coloured noise
� � (�).
Thus, the signal received by the �

th microphone can be
expressed as follows:

)()()()()()( ����
�������� �

�
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where � � (�) denotes the acoustic room FIR for the �
� �

microphone.
Instead of directly dealing with this coloured noise case, we
propose to introduce a pre-whitening step (Cf. FIG 2). This has
the advantage to view the coloured case as an easier case, i.e.
the additive white case.
The additive coloured noise )(�� � is assumed to be

stationary, and hence can be modelled by a �
th order auto-

regressive process:
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where )(��
 is a zero-mean white noise with variance 2�σ
and ( ) �
�� �� ,...,)( = the prediction coefficients.

FIG 2: speech contaminated by both convolutive and additive coloured
noises and pre-whitening step

Indeed, from relation (2), we obtain:
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where )(�� � and )(�� � respectively denote the Z-transforms

of )(�� � and )(��� .

The observations � � (�) and � � (�) are respectively filtered by
the inverse filters )(�� � and )(�� � , previously estimated

from silent frames. Thus, given FIG 2, equations (2) and (3),
one obtains:
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The resulting block-diagram is given in FIG 3, where
))(()( ������ �� ∗= , which denotes the inverse Z-transform

of )(��! , is a ( ) � �
"#� =+ order FIR.

FIG 3 : equivalent scheme after the pre-whitening step

Let us introduce:
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and the observation matrix defined as follows:
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From relations (1), (2) and (5), we obtain:

)(w)(sH)(z ��"� += . (12)

Given the data )(�� , the method we propose operates in the

three following steps, summarized as follows:

• Firstly, a blind deconvolution method is used to estimate
the FIR � & (�) and � ' (�). Among the blind deconvolution
approaches developed the very last years such as the
TSML [13] [14], subspace method for deconvolution [15],
we propose to consider the method proposed in [3] since it
has also the advantage to provide the estimations of FIR

orders and the variances 2
1σ �and 2

2σ �of the additive white

noises � & (�) and � ' (�) (even in an unbalanced case).
• Secondly, given the noisy observations � & (�) and � ' (�) and

the estimations of 2
1σ �and 2

2σ , the filtered versions of the

speech�� & (�) and � ' (�) are estimated by using a subspace
method for speech enhancement [7].

• Thirdly, speech signal 
(�) can be estimated in the least
square sense, from the estimations of � & (�), � ' (�), � & (�)
and � ' (�). Indeed, we have :
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( ) ( )�� � v̂Ĥŝ += (13)

where +�Ĥ denotes the pseudo-inverse of the matrix �Ĥ .

The remainder of this paper is organized as follows:
in section II, we recall the blind deconvolution method
proposed by one of the author in [3]. In section III, we
provide some simulation results.

II. FOCUS ONE THE ESTIMATIONS OF THE VARIANCES OF THE

ADDITIVE NOISE AND THE FIR
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The deconvolution approach proposed in [3] is based on the
positive definiteness property of the autocorrelation matrix�

� �R of the data )(�� and the non-negative definiteness of the

autocorrelation matrix
�
� �R of )(�� . In [1] [3], the authors

show that:
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The FIR, � � (�) and � � (�), can therefore be obtained providing�
� �R is available. However, this matrix is unknown, but can

be estimated from
�

� �R . Indeed, since )(�� and )(�� are

uncorrelated, one obtains:
�
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The estimation of the FIR, � � (�) and �  (�), is based on the

preliminary estimations of 2
1σ �and 2

2σ $ At that stage, one can

pay attention to the method proposed in [1] where the authors

introduce the matrix ( )11 I,I)(R
~

++= !!!
����* βα , for 0>( ,

satisfying:
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The set of solutions ),( βα to equation (18) corresponds to a

convex curve, in the plan ),( βα , denoted ( )$
% %� R . Then,

estimating the variances of the additive noise ),(
&&&' σσ

consists, in theory, in searching one common point ∗* to the

curves ( )$
% %� R with "( ≥ [1]. Cf. example in FIG 4.

However, in practical applications, ∗* does not exist. For
this reason, various criteria have been proposed to estimate

2
1σ , 2

2σ , and (c [3]. In the following, we will consider one

of them.
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FIG 4: convex curves ( ))* *
� R and exhibition of a common point ∗*

corresponding to the variances of the additive noises. Synthetic case.
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The criterion we consider is based on the following idea.
First, one must notice that:
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However, when ∗= ** , � 0 (()=0 for 1+≥ "( . So we obtain:
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In addition, we have:
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Therefore, the variances of the additive noises can be
obtained by minimizing the following criterion:

4
5 6 65 6 6
****+ )(R)(R),(2 −= (23)

where 7. denotes the Frobenius norm. (Cf [3] for more

details).
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As an illustration, we propose to complete a comparative
study using 5th order filters, for various SNR.
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with [ ]
�

"��"�� )()0()()0(h 2211 ��= , )(ĥ � denotes the

estimation of the RIF for the �th run and 3 the number of runs.

FIG 5: NRMSE(dB) vs input SNR(dB) for various deconvolution approach

III. SIMULATION RESULTS, CONCLUSION AND PERSPECTIVES

The speech enhancement approach is exercised with a speech
signal, sampled at 8 KHz, then filtered by synthetic FIR filters
whose orders # are equal to 100; � � (�) are contaminated by an
additive 5th order auto-regressive process. Cf. Table 1.
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Table 1: average Output SNR vs XiNR, based on 100 runs
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FIG 6: speech, speech contaminated both by an echo and an additive
coloured noise (SNR=20, 1st microphone) and enhanced speech

In addition to SNR improvement criterion, informal
subjective tests have been performed and show significant
results, especially when the so-called XiNR is higher than
20dB.
In this paper, our purpose was to deal with a more realistic
speech enhancement situation. For this reason, we have taken
into account the influence of the spatial features of the room.

When using subspace methods for speech enhancement,
estimating the variances of the additive noises is problematic.
Here, we take advantage of the deconvolution step to obtain
the noise statistics.
We are currently working on an alternative to the intermediate
application of the subspace filtering technique that would
consist in directly applying a minimal variance estimation
approach. In addition, brand new simulations are in progress
with FIR order much higher.
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