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ABSTRACT

We propose a best basis search algorithm for local cosine dictio-
naries. We improve upon the classical best local cosine basis se-
lection based on a dyadic tree [2], by considering a larger dictio-
nary of bases. This results in more compact representations, lower
costs, and approximate shift-invariance. We also provide a version
of our algorithm which is strictly shift-invariant.

1. INTRODUCTION

Adaptive signal representation and approximation in overcomplete
dictionaries have received much attention in recent years. The
contributions of our paper are in the area of best basis search al-
gorithms where the aim is to adaptively select, from a library of
orthonormal bases, the basis which minimizes a cost for a given
signal. Such methods have been demonstrated to be effective for
compression [11], noise removal [5,6,9], and time-frequency anal-
ysis [3, 12].

The original paper on best basis search [2] exploited the fact
that 1-D wavelet packet bases [1] and local cosine bases [8] can
be organized on a single dyadic tree, making it possible to find the
best basis (for an additive cost) via an efficient dynamic program-
ming algorithm. In the case of local cosines, however, it required
the restriction of local cosine bases to dyadic intervals. In this pa-
per, we remove this restriction and propose an algorithm to find
the best basis in an arbitrary collection of local cosine bases. As
we show through several examples, this results in reduced costs,
sparser time-frequency pictures, and approximate shift-invariance.
We show that this algorithm can moreover be made strictly shift-
invariant by using a procedure similar to the one developed in [3].

In a companion paper [10], we show that our dynamic pro-
gramming algorithm is a 1-D version of a wide class of 2-D opti-
mal basis search algorithms. In [10], we use these 2-D algorithms
to find the best rectangular tiling of an image, and to find the best
anisotropic wavelet packet basis [13].

Note that the original best basis paper [2] proposed using an
entropy cost. Since then, a number of papers have proposed dif-
ferent criteria, e.g., based on the MDL principle [5, 9], Bayesian
estimation [6], rate-distortion framework [11]. We do not address
the issue of cost selection in this paper, and use the entropy cost
for simplicity. Our algorithms, however, can be used in conjunc-
tion with any additive or multiplicative cost.

This work was supported in part by a National Science Foundation
(NSF) CAREER award CCR-0093105, a Purdue Research Foundation
grant, and an NSF CAREER award CCR-0237633. All plots were gen-
erated with the help of Wavelab 802 [4].

2. BACKGROUND

The general best basis search problem is formulated, for example,
in [2, 7]. We consider a dictionary D that is the union of orthonor-
mal bases for C

N , D =
[

λ∈Λ

Bλ, where each basis Bλ is a family

of N vectors, Bλ = {gλ
m}1≤m≤N . The cost of representing a sig-

nal f in a basis Bλ is defined as

C(f, Bλ) =
NX

m=1

Φ

„ |〈f, gλ
m〉|2

||f ||2
«

, (1)

where Φ is application dependent. Any basis which achieves the
minimum of the cost C(f, Bλ) over all the bases in the dictionary,
is called the best basis. In this paper, we develop fast algorithms
for finding the best basis in local cosine dictionaries.

3. MULTITREE LOCAL COSINE DECOMPOSITIONS.

3.1. A Local Cosine Dictionary

A local cosine family [8] is defined using cosine functions multi-
plied by overlapping smooth windows. For each discrete interval
[u, v − 1] ⊂ Z of length a = v − u, we define a window func-
tion βu,v which gradually ramps up from zero to one around u and
goes down from one to zero around v − 1:

βu,v(t) =

8>>><
>>>:

r
“

t−(u−1/2)
η

”
if u − 1

2
− η ≤ t < u − 1

2
+ η

1 if u − 1
2

+ η ≤ 1 < v − 1
2
− η

r
“

(v−1/2)−t
η

”
if v − 1

2
− η ≤ t ≤ v − 1

2
+ η

0 otherwise,

where the parameter η ∈ R controls how fast the window tapers
off, and r is a monotonically increasing profile function,

r2(t) + r2(−t) = 1 ∀t ∈ R; r(t) =

j
0 if t < −1
1 if t > 1

We always set a ≥ 2η. Following [8], we define the discrete local
cosine family Bu,v as follows:

Bu,v =

j
βu,v(n)

√
2√

v − u
cos

π(k + 1
2
)(n − (u − 1

2
))

v − u

ffv−u−1

k=0

,

where n ∈ Z is a discrete parameter. It can be shown [8] that this
set of signals is orthonormal.
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For a signal f of length N , we search for the best basis in the
local cosine dictionary

D =
[

λ∈Λ

Bλ (2)

which consists of the following local cosine bases:

Bλ =

Kλ−1[
k=0

Bnk,nk+1 , (3)

where λ is a set of partition points {nk}0≤k≤Kλ
of the domain of

f . We impose that the finest cell size be some fixed integer M ≥
2η, i.e., we require the partition points to be integer multiples of
M . This restriction ensures that only adjacent windows overlap
and improves the speed of calculation:

n0 = 0 < n1 < · · · < nKλ−1 < nKλ = N

nk is divisible by M where M ≥ 2η is a fixed integer.

We note that the resulting dictionary is larger than the local
cosine tree dictionary of [2]. In fact, if we choose M such that
N/M = 2J where J is the maximum depth of the local cosine tree
of [2], it can be easily shown that the local cosine tree dictionary
of [2] will be a subset of our dictionary.

3.2. A Best Basis Algorithm.

In [2], the fact that the bases of the dictionary can be organized as a
dyadic tree was exploited to yield a fast (O(NJ log N)) dynamic
programming algorithm for the best basis search. Although the
bases of our dictionary cannot be organized as a single tree, we can
still use dynamic programming for the best basis search. Let fu,v

denote the following segment of a discrete signal f : f(u), f(u +
1), . . . , f(v − 1), where 0 ≤ u < v ≤ N , and let the best basis
for fu,v be Ou,v . For v − u > M ,

Ou,v =

8><
>:

Bu,d∗ ∪ Od∗,v,
if C(f,Bu,d∗) + C(f,Od∗,v) < C(f,Bu,v)

Bu,v, otherwise

(4)

where

d∗ = arg min
d: u<d<v, d is a multiple of M

C(f,Bu,d) + C(f,Od,v).

(Note that, since the cost function is additive, the cost of Bu,d ∪
Od,v is C(f,Bu,d)+C(f,Od,v).) The initial condition is that for
v − u = M , Ou,v = Bu,v .

Then the best basis O0,N for signal f can be calculated re-
cursively by applying (4). If L = N/M , then the recursion for-
mula (4) takes O(L2) operations. The major computational bur-
den is associated with computing the costs. The calculation of
C(f,Bu,v) via the definition (1) involves O(a) additions where
a = v − u, as well as the computation of the inner product of
f with each basis function in Bu,v which requires O(a log a) op-
erations using a fast local cosine transform algorithm [8]. In the
process of calculating O0,N , we need the values for C(f,Bu,v)
with u = pM, v = qM where p = 0, 1, . . . , L − 1 and q =
p + 1, p + 2, . . . , L. It is easy to show that this results in the over-
all time complexity of O(L2N log N) = O(N3/M2 log N).

Since the bases in our dictionary can be organized using mul-
tiple trees (as opposed to a single tree in [2]), we call our method
a multitree local cosine decomposition.

100 200 100 200

(a) (d)

Time-frequency planes for best local cosine bases:

(b) Classical. (e) Classical.

(c) Multitree. (f) Multitree.

Fig. 1. The original signals and time-frequency representations
of the best local cosine basis with smallest cell size M = 16:
(a) a signal consisting of two local cosine basis functions; (b) the
time-frequency tiling for the best local cosine basis of [2]; (c) the
time-frequency tiling for the best multitree local cosine basis; (d-
f) a similar experiment for the signal in (a) shifted by 16 samples.
The darker the rectangle in (b,c,e,f) the larger the amplitude of the
corresponding local cosine coefficient.

100 200 100 200

(a) (d)

Time-frequency planes for best local cosine bases:

(b) SI-LCD. (e) SI-LCD.

(c) Multitree. (f) Multitree.

Fig. 2. The original signals and time-frequency representations
of the best local cosine basis with smallest cell size M = 16:
(a) The signal from Fig. 1(d); (b) the shift-invariant local cosine
decomposition [3]; (c) a copy of Fig. 1(f), i.e., the best multitree
local cosine basis; (d-f) a similar experiment for a signal where the
two local cosine bumps are shifted by different amounts.
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3.3. Shift-Invariance: A Qualitative Discussion.

We call a best basis search algorithm n0-shift-invariant if circu-
larly shifting any signal by an arbitrary integer multiple of n0

leads to shifting its best basis by the same multiple of n0. When
n0 = 1–i.e., when the algorithm is invariant to any integer shift,
we simply call it shift-invariant.

Our method described in the previous subsection is, strictly
speaking, not M -shift-invariant, since we always require the left-
most basis function to start at the leftmost point of the signal. It is,
however, M -shift-invariant, modulo these boundary effects: i.e., it
is invariant to shifts by integer multiples of M for signals whose
support is well within the interval [0, N − 1].

The classical best local cosine basis algorithm of [2] is funda-
mentally not shift-invariant since it uses a dyadic tree. Its variant
introduced in [3] is formally shift-invariant; however we now show
that our method offers certain advantages.

To illustrate the shift-invariance properties of the algorithms,
we use a 256-point signal depicted in Fig. 1(a) which consists of
two local cosine basis functions, one with u = 32 and v = 64,
and another one with u = 128 and v = 160. For each al-
gorithm, the smallest cell size M is chosen to be 16. (For the
single-tree methods, this means that the maximal tree depth is set
to J = log2 N − log2 M = 4.) Figs. 1(b) and (c) show the
time-frequency tilings for the best basis extracted by the classi-
cal method of [2] and our multitree method, respectively. These
are identical. However, when the signal is shifted by 16 sam-
ples to the right (Fig. 1(d)) , the result for our method stays the
same (Fig. 1(f)) whereas the classical best basis changes drasti-
cally (Fig. 1(e)).

This can be fixed by the shift-invariant local cosine decom-
position (SI-LCD) proposed in [3] which essentially considers N
shifted versions of the dictionary, and is therefore shift-invariant.
The signal of Fig. 2(a) is identical to that of Fig. 1(d). The best ba-
sis extracted by the SI-LCD algorithm Fig. 2(b) is identical to the
best multitree basis. Let us now consider another signal, obtained
by taking the signal of Fig. 1(a), retaining its first component as
is, and shifting its second component to the right by 16, as shown
in Fig. 2(d). Our algorithm is still invariant to this change, see
Fig. 2(f). SI-LCD, however, produces a different basis.

3.4. A Strictly Shift-Invariant Algorithm.

The qualitative discussion of the previous subsection shows that
our algorithm possesses the desired shift-invariant properties, even
though it is not, strictly speaking, shift-invariant. We now show, in
addition, that we can make it strictly invariant to any integer shift,
using a method similar to [3].

For a discrete signal f of length N , we extend both the signal
and the basis functions periodically with period N . We expand the
dictionary of Subsection 3.1 by adding in the shifts of the basis sig-
nals. We define D0 to be the same as the dictionary of Eqs. (2,3),
and let Ds be D0 shifted by s to the left. The new dictionary DSI

is defined to be the union of the N shifted subdictionaries:

DSI =

N−1[
s=0

Ds.

Now the best basis search involves finding the subdictionary Ds∗

that contains the best basis and searching for the best basis in Ds∗ .
Using an argument similar to the one in Subsection 3.2, it can be
shown that the optimal solution is achieved in O(N3 log N). We

adopt a suboptimal solution based on the method in [3], to result
in the time complexity similar to that of Subsection 3.2.

Recall that M is the size of the finest cell we are considering,
and L = N/M is the total number of such cells. We let s =
lM + m where l is the cell where s appears, 0 ≤ l < L, and m is
the position of s within the cell, 0 ≤ m < M . Instead of finding
s∗, i.e., optimizing over m and l jointly, we first optimize over m
and then optimize over l. We optimize over m using the method
described in [3]. For each shift m = 0, 1, . . . , M − 1, define the
following basis Bm:

Bm =

L−1[
l=0

BlM+m,(l+1)M+m.

We calculate the cost Cm of approximating f with the basis Bm:

Cm =

L−1X
l=0

C(f,BlM+m,(l+1)M+m).

Then m∗ is found by minimizing the cost Cm over m:

m∗ = arg min
0≤m≤M−1

Cm.

Now we optimize over l. LetOlM+m∗,N+lM+m∗ be the best basis
for the signal flM+m∗,N+lM+m∗ in the subdictionary DlM+m∗ ,
for l = 0, 1, . . . , L − 1. The best basis for each l is calculated in
the same way as in Subsection 3.2. Then we choose the best l:

l∗ = arg min
0≤l≤L−1

C(f,OlM+m∗,N+lM+m∗).

The corresponding (suboptimal) shift-invariant best basis O for
the signal f is Ol∗M+m∗,N+l∗M+m∗ . It can be shown that this
results in the overall time complexity of O((L2 +M)N log N) =
O(((N/M)2 + M)N log N), which is the same as in Subsec-
tion 3.2 if M is not too large. For comparison, the algorithm of [3]
is O((log(N/M) + M)N log N).

4. EXAMPLES

To further illustrate our methods, we use two examples which com-
pare our proposed multitree local cosine decomposition with the
classical best local cosine basis selection based on a single dyadic
tree [2]. We follow [2] and use the entropy cost function for all the
experiments, i.e., Φ(x) = −x loge x in Eq. (1). We set η = 8.

Fig. 3(a-c) shows a speech signal of length N = 4096 and
the time-frequency pictures for the best bases selected by the two
methods. The minimal cell size for these experiments was set at
M = 16 for both methods. The resulting costs are: 4.11 for the
classical method and 3.51 for our method. In addition, note the
more sparse time-frequency picture resulting from our method.

In Fig. 3(d), we zoom into the samples 1001 through 1512 of
the signal in Fig. 3(a). For this 512-point segment, we compute
the best basis with the two methods, again setting M = 16. This
results in the following costs: 2.44 for the classical method and
2.02 for our method. Again, the representation resulting from our
method corresponds to a more sparse time-frequency tiling. More-
over, the transition between two phonemes (in the neighborhood of
the sample 1150) is missed by the best single-tree basis but is ac-
curately captured by the best multitree basis.
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1000 2000 3000 1200 1400

(a) “Grea” speech signal. (d) A 512-point segment.

Time-frequency planes for best local cosine bases:

(b) Classical, C = 4.11. (e) Classical, C = 2.44.

(c) Multitree, C = 3.51. (f) Multitree, C = 2.02.

Fig. 3. Two signals and the time-frequency pictures of their best
bases: (a) segment “grea” of the speech signal “greasy”; (b,c) the
time-frequency tilings for the best local cosine basis of [2] and for
the best multitree local cosine basis, respectively; (d-f) a similar
experiment for a shorter segment of the speech signal.

Fig. 4 summarizes a larger experiment where the best basis
was found for four different values of the minimal cell size M :
128, 64, 32, and 16. In addition to the classical single-tree algo-
rithm and our multitree algorithm, we compared the results with
the shift-invariant versions of the two algorithms: the shift-invariant
local cosine decomposition (SI-LCD) [3] and our shift-invariant
multitree algorithm described above. The resulting costs for the
four algorithms are plotted as a function of M . Note that in both
cases, the whole curve for the multitree algorithm is below each of
the outcomes for the algorithms in [2, 3]. This is to be expected
since we perform the search over a much larger dictionary. The
price to pay is the time complexity of the algorithm, which, as
indicated above, is higher than the time complexity for the clas-
sical best-basis search algorithm. Note, however, that for small
signal lengths the running time of the two algorithms is similar.
For example, in our experiment with the 512-point signal, the run-
ning times for M = 128, 64, 32, 16 are 0.01, 0.02, 0.02, and 0.03
seconds, respectively, for the classical algorithm and 0.01, 0.01,
0.05, and 0.19, respectively, for our algorithm. This suggests that
the most practical way of using our algorithms is on small blocks.
We are currently developing efficient methods for doing this.

128 64 32 16

3.5

3.7

3.9

4.1

Cell size M

C
o
s
t 

C

classical
SI LCD
multitree
SI multitree

128 64 32 16
2

2.3

2.6

Cell size M

C
o
s
t 

C

classical
SI LCD
multitree
SI multitree

(a) “Grea” speech signal. (b) A 512-point segment.

Fig. 4. The performance of four algorithms for extracting the
best local cosine basis: classical single-tree algorithm [2] (dot-
ted), shift-invariant LCD [3] (dashdot), the proposed multitree al-
gorithm (solid), and the proposed shift-invariant version of the
multitree algorithm (dashed). The optimal cost is depicted as a
function of the minimal allowed cell size: (a) 4096-point “grea”
speech signal, (b) 512-point segment of the signal.

5. CONCLUSIONS

We have developed a new best basis search algorithm to adaptively
compute the optimal multitree local cosine decomposition. Simple
examples show that the algorithm yields lower costs, sparser repre-
sentations, and better shift-invariance properties than the classical
best basis search. In addition, it can better represent important
time-frequency features.
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