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ABSTRACT

This paper proposes a new method for performing 

multiresolution analysis (MRA) of non-uniform data with jump 

discontinuities and impulsive noise using robust M-estimator-

based local polynomial regression (LPR).  The basic idea is to 

interpolate the smoothed estimate, after performing the robust 

LPR, on a uniform grid in order to perform the MRA using the 

ordinary wavelet transform.  Simulation results show that the 

new approach performs better than traditional LS-based LPR in 

preserving jump discontinuities and suppressing isolated 

impulses when the intersection confident intervals (ICI) 

bandwidth selection is employed.    

1. INTRODUCTION 

The classic wavelet transform for data smoothing and 

decomposition are mostly applied to uniform data which is  

modeled as: ,...,N, itimY ii 1,)( )()(
(1)

where )(Xm  is a smooth function specifying the conditional 

mean of )(iY  given )(iX , and )(i  are the additive noise.   For 

non-uniformly sampled data, which are frequently encountered 

in modeling of large-scale systems, environmental studies, 

probability density estimation, etc, appropriately modifications 

have to be carried out. Generally, existing wavelet-based 

regression of non-uniform data can be broadly classified into 

two different classes of techniques. One is to interpolate the 

original data at equidistant points [3,14], and the other is to 

project the equispaced result onto the irregular grid [2,4]. A 

technique based on lifting [1] has also been reported.  In this 

paper, we consider the problem of multi-resolution (MR) 

decomposition/analysis of non-uniform data with jump 

discontinuities and is corrupted by Gaussian as well as impulsive 

noises.  As pointed out in [10], wavelet regression is closely 

related to another efficient nonparametric regression method 

called local polynomial regression (LPR)  [7-12].  In LPR, the 

function to be estimated is assumed to be continuous locally so 

that the noisy observations can be fitted locally by a polynomial 

using a least-squares (LS) fit with a kernel function having a 

certain bandwidth.  The bandwidth parameter h in LPR is 

closely related to the concept of scale in wavelet analysis.  In 

wavelets, the scale parameters are chosen as powers of two and 

fixed basis functions are employed.  Important advantages of 

LPR are that the data points can be non-uniformly spaced and 

the bandwidth can be varied locally to achieve a better bias-

variance tradeoff.  Motivated by these inherent and important 

advantages, we propose to perform the smoothing by a robust 

LPR and compute the samples of the data on a regular grid for 

performing MRA.  The robust LPR employed in this paper is 

based on M-estimation instead of the conventional LS fit.  M-

estimator-based LPR was studied in [9] for image smoothing 

with jump discontinuity.  However, the bandwidths for the M-

estimator and the kernel function are fixed and their selection 

usually requires human intervention.  The proposed robust LPR 

employs the ICI rule introduced in [9] and [10] for choosing this 

local bandwidth.  Simulation results show that it helps to 

preserve the jump discontinuities, while the M-estimator is 

capable of suppressing the outliners as well as stabilizing the 

estimate around the jump discontinuities.  It should be noted the 

jump discontinuity problem in wavelet estimators was also 

studied in [3] using different interpolation methods considered 

here.  Also, the problem of impulsive noise is not considered. As 

shown in the simulation section, direct interpolation of the 

observations can be substantially affected by the impulsive 

noises. The problem of robust wavelet analysis with impulsive 

outliners was also considered in [6] using a uniform design.  Our 

paper is organized as follows: in Section 2, the basic principle of 

LPR is introduced. Sections 3 and 4 are devoted to the proposed 

M-estimation-based LPR algorithm with ICI rule. Interpolation 

of the nonuniform data to the uniform grid is considered in 

Section 5. Simulation results and comparisons are described in 

Section 6.

2. LOCAL POLYNOMIAL REGRESSION

In LPR, we are given noisy samples of a signal:  
)()()( )( iii mY X , i=1,…,n, (2)

where )(Xm  is a smooth function specifying the conditional 

mean of )(iY  given )(i
X , and )(i  are independent identically 

distributed additive noise with zero mean and variance 2 .   We 

need to estimate the original signal )(Xm  and its derivatives 

)(Xkm  from the noisy samples )(iY  at location 
T

dxx ),...,( 1x . One flexibility of LPR is that the data points 

X(i) can be non-uniformly spaced and the observations around a 

point x  is approximated locally by the following polynomial: 
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 is a vector 

containing the coefficients of the polynomials.  We can estimate 

 from ),( )()( iiY X  by the weighted least square method.  Let 
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)():( xXXxh hKw  be the weighting function for a sample 

at X  for estimating  at x . To allow an efficient tradeoff 

between bias and variance, the weighting function or kernel 

):( Xxhw  for the LS fit is usually chosen as 

))((||)( 11 xXhhxXh KK , where h is a bandwidth 

matrix and )(K  is a non-negative function such as the 

Gaussian function or the Epanechnikov kernel 

)|u|(1-)( 2uK .   Selecting a proper local bandwidth is very 

critical to achieve the best bias-variance tradeoff in estimating 

non-stationary signals.  For slow varying parts of a signal, we 

would like the window size or bandwidth to be large so that 

more accurate estimates can be obtained by averaging out the 

additive noise as much as possible.  At fast varying parts of a 

signal, however, we would like to have a smaller window size so 

that excessive bias errors due to the limited order of the fitting 

polynomial will not occur.  The determination of local adaptive 

bandwidth has been a subject of intensive research in the 

statistics community.  For a survey of this topic, see [8] and the 

references therein. The LS solution of  is 

),(minarg),(ˆ hxhx LSLS E , (4)

and
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2)()()( )}(){(),( XPXxhx h . Differentiating 

),( hxLSE  with respect to  and setting the derivative to zero,

one gets 
YXXXLS PPhx 1)(),(ˆ
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From ),(ˆ hxLS , we can also estimate the derivatives of )(xm :
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from the polynomial )(ˆ xm  as follows: 
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where ]0,...,0,1,0,...,0[1T
k  is a vector with a one in the k-

location.

3. M-ESTIMATION AND IRLS 

“M-estimation” refers to “generalized maximum likelihood 

estimation”, which is a formal approach to robust estimation 

developed by Huber in 1964. Later, Härdle & Gasser [11] 

combined M-estimation with nonparametric function fitting. 

More recently, Chu et al. [12] employed M-smoother with local 

linear fit to address the problem of smoothing with jump 

discontinuities. They have also been employed in robust 

adaptive filtering under impulsive noise [13].  Unlike LS-

estimation, M-estimation minimizes a different objective 

function, which effectively down-weigh those data points with 

abnormally large errors. By so doing, the bandwidth is less 

sensitive to the impulsive noise and jump discontinuities.  More 

precisely, the M-estimate ),( hx  is obtained by minimizing a 

score function: 

),(minarg),(ˆ hxhx MM E

n

i

i

p

Tii

M YKE
1

)()()( ))(()(),( XPXxhx h

(10)

where )/()( xx  with )(x  an M-estimate function 

(Huber function, 3-parts re-descending functions, etc [5]). The 

function )(x  usually levels off when the magnitude of x is 

large so that the estimation error )( )()( i

p

Ti

i Ye XP  is de-

emphasized when ie , a certain threshold to be determined.   

Since the main purpose of the scale parameter is to “reject the 

outliner”, it exact value is not that sensitive, provided it is not 

chosen too large or too small. Based on the results of the 

estimators we proposed in [13], we let )(576.2 )(i
X ,

where )( )(2 i
X is the robust variance estimator 

))(()( 1

)(2 iAmedc e

iX (11)

where })(,,){()( 2)2()1(2)1()( ww
NiNiii

e YYYYiA , wN  is 

the length of the estimation window and 

)1(483.1
)1

5
1

wN
c  is a finite sample correction factor.  

After determining a rough estimate of )( )(2 iX , it can be 

scaled appropriately to obtain the scale parameter of the 

M-estimate function. Differentiating ),( hxME  with 

respect to  and setting the derivative to zero, we get 
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Note that this is a nonlinear equation, because the entries of 

YX_P  and XX_P  depend on )( )()( i

p

Ti

i Ye XP , which in 

turns depend on the parameter to be estimated. We can solve 

),(ˆ hxM  using the iterative reweighed least squares (IRLS or 

IWLS) or other Newton-based methods.  In the IRLS, one starts 

with an initial estimate of ),(ˆ )0( hxM  and repeatedly solves (12) 

by replacing T  in )( )()( i

p

Ti

i Ye XP  by )1(ˆ l , where l

is the iteration number: 
)1(
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   l=1 to maxl or change of  ),(ˆ )( hxl

M  is small enough, 
(13)
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)()()1()1(

_ )():( XPXxP .  Let us use a 1-D scenario 

to explain why M-estimation works even for impulsive noises 

and jump discontinuities. When the LPR is performed using LS 

fit and the ICI rule, the adaptive bandwidths at the locations of 

the impulses and jump discontinuities, are normally very small 

to limit the bias errors. Therefore, not only the edges, but also 

the impulsive noises are preserved. On the other hand, the M-

estimate function, (.) , with an appropriate scale , help to 

de-emphasis the effects of these outliners by assigning them a 

smaller weights.    
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4. BANDWIDTH SELECTION USING ICI 

Unlike plug-in bandwidth method, where parameters in certain 

analytical optimal bandwidth formulae are estimated and 

“plugged” into the formulae, empirical method usually starts 

with a finite set of window sizes: 

JhhhH 21 , (14)

and determines the optimal bandwidth by evaluating the fitting 

results (note, in multivariate data, windows can be ordered 

according to the volume of their support).  Let ),(ˆ
jhxm  be the 

estimate for the window jh .  The variance and the bias of these 

estimators at x are functions of the filter bandwidth h, so is the 

mean square error (MSE). In fact, we have: 

)],(ˆ[)],(ˆ[),( 2 hxhxhx mbiasmVarMSE . (15)

As mentioned earlier, the bias of the estimation will increase 

rapidly if the bandwidth h becomes so large that the underlying 

data at x cannot be modeled by the local polynomial of a given 

order.  On the other hand, the larger the window size, the smaller 

will be the variance of the estimator. So there exists an optimal 

bandwidth )(xopth where the MSE(x,h) is minimized.  To 

determine this optimal bandwidth, the ICI rule examines a 

sequence of confidence intervals of the estimates ),(ˆ
jhxm :

],[ jjj ULD ,

),(),(ˆ
jj hxhx kj stdmU , ),(),(ˆ

jj hxhx kj stdmL ,
(16)

where ),( jhxkstd is the standard deviation of the estimate and 

0  is a threshold parameter of the confidence interval. 

Define the following quantities from the confident intervals 

],,max[ 1 jjj LLL ],,min[
1 jjj

UUU (17)

j=1,2,…,J, 0
00 UL . The largest value of these j for which 

jj
LU  gives j+ and it yields a bandwidth hj

+, which is the 

required optimal ICI bandwidth.  In other words, the optimal 

bandwidth hj
+ is the largest j when jj

LU  is still satisfied. 

Note, the ICI window sizes are different for different position of 

x.  Because the optimal bandwidth is decided by ,  plays a 

crucial part in the performance of the algorithm. When  is 

large, the segment Dj becomes wide, and it will cause the value 

of hj
+ to be bigger. This will result in over-smoothing. On the 

contrary, when  is small, the segment Dj would become 

narrow, and it will yield a small value of hj
+ so that the noise 

cannot be removed effectively. In [10], Katkovnik used Cross-

Validation to determine a reasonable threshold .

5. INTERPOLATION AND MRA 

After removing the impulsive and Gaussian noises from the 

original non-uniform data, it can be interpolated to a uniform 

grid for performing the MR using the wavelet transform. In this 

section, we use local regression with Gaussian filter to 

interpolate the data and the filter bandwidth can be obtained 

automatically by ICI rule.  There are several methods for 

carrying out the interpolation.  Suppose that we have a local 

polynomial representation at two adjacent points 0x  and 1x :

):( 0xxp  and ):( 1xxp .  Then, the value of a point ):( 10 xxx

can be obtained by linear interpolation from the estimate of 

):( 0xxp  and ):( 1xxp .  Another simple method is to perform a 

linear interpolation using LPR and ICI again, which has the 

advantage of preserving the jump-discontinuities.   

6. SIMULATIONS

We now evaluate the proposed algorithm using a 1-D with 

jump-discontinuities and impulsive noises. First of all, we shall 

demonstrate the effectiveness of the M-estimator-based LPR 

over the LS-based LPR using ICI bandwidth selection and 

uniform data.  Figures 1 to 3 show the original noisy signal and 

the estimates obtained from the two approaches.  It can be seen 

that the M-estimator-based LPR is able to preserve the jump 

discontinuities while suppressing the isolated impulses.  

Therefore, we would expect a direct interpolation of this noisy 

signal onto a uniform grid be substantially affected by the jump 

discontinuities and impulsive noise, and it is not suitable for 

performing multi-resolution analysis.  We now proceed to the 

nonuniform data in Fig. 4.  The additive noise is Gaussian noise 

with zero mean and variance 0.01.  The amplitude of the 

impulsive noises is generated randomly with a variance of 1.5.  

To better visualize the effects, their locations are fixed at x=0.1,

0.2, 0.55, 0.7 and 0.95. The two jump discontinuities locations 

are at x=0.35, 0.8.  The original observation signal and the M-

estimation result were shown in Fig.4. We can clearly see from 

Fig.1 that M-estimator-based LPR can preserve those jump 

discontinuities or edges, while removing the isolated impulses. 

The M-estimator we used is the Huber function 

otherwise

ee
e

,2/

||0,2/
)(

2

2

.  Other M-estimate function such as 

cauchy or Hampel three parts redescending function can also be 

used.  The threshold  is   computed from (11) in Section 3.  

Fig. 5 shows the signal after interpolating to a uniform grid 

using linear LPR with ICI and LS fit.  It can be seen that the 

jump discontinuities are well preserved.  The wavelet 

decomposition of this uniform data is shown in Fig. 6.  The jump 

discontinuities at x=0.35 and 0.8 show up as sharp changes of 

the wavelet coefficients.  Note the sign of the coefficients, which 

indicate the polarity of the jumps.

7. CONCLUSION 

A new method for performing multiresolution analysis of non-

uniform data using a robust M-estimator-based LPR and ICI 

bandwidth is presented. Simulation results show that the new 

approach is able to preserve jump discontinuities and 

suppressing isolated impulses.
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Fig.1.“x” - observation data, “...” - estimate using LS-based LPR with 

ICI, “---” - estimate using LPR with M-estimator-based LPR with ICI. 

Impulsive noise are added at positions x = 0.05, 0.3, 0.5, 0.6 and 0.9. 

Additive Gaussian noise has mean 0 and variance 1/3.  

Fig.2. Adaptive bandwidths with. Gaussian kernel. m=1, =0.002.  

Fig.3. Adaptive bandwidths with Gaussian kernel.  m=1, =0.004. 

Fig.4. Upper figure: “+” - observed non-uniform data, “o” - estimate 

signal using LPR with M-estimation function and ICI (Iterative operation 

of IRLS is only once). Lower figure: local adaptive bandwidth, which  is 

represented by  in the kernel Gaussian filter )
2

exp(
2

1
)(

2

2x
xKh

.

m=1, =0.35.

Fig.5. Upper figure: interpolated uniform data using linear LPR with LS 

and ICI. Lower figure: adaptive bandwidth which is represented by  in 

the kernel Gaussian filter )
2

exp(
2

1
)(

2

2x
xKh

. m=1, =0.2. 

Fig.6. The wavelet we used is db3 in MATLAB wavelet toolbox, and 

three level of wavelet decomposition was performed.   
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